EVALUATING ENERGY CONSUMPTION EFFICIENCY IN TOBACCO PRODUCTION: APPLYING DATA ENVELOPMENT ANALYSIS

dc.contributor.authorMushtaq, Zulqarnain
dc.contributor.authorWei, Wei
dc.contributor.authorSharif, Maimoona
dc.contributor.authorChandio, Abbas Ali
dc.contributor.otherEkonomická fakultacs
dc.date.accessioned2021-09-15T08:08:05Z
dc.date.available2021-09-15T08:08:05Z
dc.description.abstractTobacco is considered as one of the most important industrial cash crop and source of livelihood to many families in Pakistan. Considering the contraction of land under tobacco cultivation, the present study is intended to evaluate the production efficiency of tobacco growers in southern Punjab, Pakistan. The Data Envelopment Analysis model was used to investigate energy usage efficiency of tobacco farmers based on seven energy inputs; human labour, farm machinery, irrigation, diesel, fertilizers, chemicals, seeds, and a single output. Moreover, the current study also used DEA – super efficiency to identify and rank efficient and inefficient tobacco producers; and to suggest optimum energy requirements and energy savings potentials. The primary data from 210 tobacco growers were collected in-person interviews by random sampling technique. The findings of the study revealed that average energy consumed in the form of inputs and yield obtained in tobacco production was 52,703.58 MJ/ha-1 and 3,096.98 MJ/ha-1, respectively. Average technical, pure technical, and scale efficiency score was calculated to be 0.902, 0.961, and 0.938, respectively. Likewise, the energy-saving ratio in tobacco production was estimated to be 13.83%, which implies that by adopting the proposed recommendations about 7,121.66 MJ/ha-1 energy could be saved without compromising the output. Also, fertilizers, chemicals, irrigation, and diesel had the highest share in the consumption of energy inputs. The findings of the study provides pinpoint options to the agricultural polices makers to launch the technical training programs for the tobacco farmers to adopt better management practices to optimize the application of energy inputs to reduce the cost of tobacco production. The agricultural extension department should also visit the tobacco fields to assist the farmers about timely application of inputs and with extension services.en
dc.formattext
dc.identifier.doi10.15240/tul/001/2021-03-002
dc.identifier.eissn2336-5604
dc.identifier.issn1212-3609
dc.identifier.urihttps://dspace.tul.cz/handle/15240/160956
dc.language.isoen
dc.publisherTechnická Univerzita v Libercics
dc.publisherTechnical university of Liberec, Czech Republicen
dc.publisher.abbreviationTUL
dc.relation.isbasedonAbbas, A., Yang, M., Yousaf, K., Ahmad, M., Elahi, E., & Iqbal, T. (2018a). Improving energy use efficiency of corn production by using Data Envelopment Analysis (a non-parametric approach). Fresenius Environmental Bulletin, 27(7), 4725–4733.
dc.relation.isbasedonAbbas, A., Yang, M., Yousaf, K., Khan, K. A., Iqbal, T., & Hassan, S. G. (2018b). Comparative analysis of energy use efficiency in food grain production systems of Pakistan. Fresenius Environmental Bulletin, 27(2), 1053–1059.
dc.relation.isbasedonAfzal, N., & Ahmad, S. (2009) Agricultural input use efficiency in Pakistan: Key issues and reform areas. Managing Natural Resources for Sustaining Future Agriculture Research Briefings, 1(3), 1–12.
dc.relation.isbasedonAlam, M. S., Alam, M., & Islam, K. (2005). Energy flow in agriculture: Bangladesh. American Journal of Environmental Sciences, 1(3), 213–220. https://doi.org/10.3844/ajessp.2005.213.220
dc.relation.isbasedonAlimagham, S. M., Soltani, A., Zeinali, E., & Kazemi, H. (2017). Energy flow analysis and estimation of greenhouse gases (GHG) emissions in different scenarios of soybean production (Case study: Gorgan region, Iran). Journal of Cleaner Production, 149, 621–628. https://doi.org/10.1016/j.jclepro.2017.02.118
dc.relation.isbasedonAndersen, P., & Petersen, N. C. (1993). A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Management Science, 39(10), 1261–1264. Retrieved from https://www.jstor.org/stable/2632964
dc.relation.isbasedonAndrianov, V., Borisjuk, N., Pogrebnyak, N., Brinker, A., Dixon, J., Spitsin, S., Flynn, J., Matyszczuk, P., Andryszak, K., & Laurelli, M. (2010). Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnology Journal, 8(3), 277–287. https://doi.org/10.1111/j.1467-7652.2009.00458.x
dc.relation.isbasedonAshkan, N. P., Hosseinzadeh-Bandbafha, H., Qasemi-Kordkheili, P., Kouchaki-Penchah, H., & Riahi-Dorcheh, F. (2016). Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production. Energy, 103, 672–678. https://doi.org/10.1016/j.energy.2016.03.003
dc.relation.isbasedonBanker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078
dc.relation.isbasedonBaran, M., & Gokdogan, O. (2015). Determination of energy input-output of Tobacco production in Turkey. American-Eurasian Journal of Agricultural and Environmental Sciences, 15(7), 1346–1350. https://doi.org/10.5829/idosi.aejaes.2015.15.7.12671
dc.relation.isbasedonBoard, P. T. (2018). Tobacco Statistical Bulletin. Ministry of Commerce, Government of Pakistan, Peshawar. Retrieved from https://ptb.gov.pk/
dc.relation.isbasedonBoz, I. (2015). Adoption of innovations and best management practices by goat farmers in eastern Mediterranean Region of Turkey. Journal of Agricultural Extension and Rural Development, 7(7), 229–239. https://doi.org/10.5897/JAERD2014.0668
dc.relation.isbasedonCanakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Conversion and Management, 46(4), 655–666. https://doi.org/10.1016/j.enconman.2004.04.008
dc.relation.isbasedonCharnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
dc.relation.isbasedonChauhan, N. S., Mohapatra, P. K. J., & Pandey, K. P. (2006). Improving energy productivity in paddy production through benchmarking – An application of Data Envelopment Analysis. Energy Conversion and Management, 47(9–10), 1063–1085. https://doi.org/10.1016/j.enconman.2005.07.004
dc.relation.isbasedonCoelli, T. J., Rao, D. S. P., O’Donnell, C. J., & Battese, G. E. (2005). An Introduction to Efficiency and Productivity Analysis. New York, NY: Springer Science & Business Media. https://www.springer.com/gp/book/9781461554936
dc.relation.isbasedonCooper, W. W., Seiford, L. M., & Tone, K. (2006). Introduction to Data Envelopment Analysis and Its Uses – With DEA-Solver Software and References. New York, NY: Springer. https://www.springer.com/gp/book/9780387285801
dc.relation.isbasedonEbrahimi, R., & Salehi, M. (2015). Investigation of CO2 emission reduction and improving energy use efficiency of button mushroom production using Data Envelopment Analysis. Journal of Cleaner Production, 103, 112–119. https://doi.org/10.1016/j.jclepro.2014.02.032
dc.relation.isbasedonErdal, G., Esengün, K., Erdal, H., & Gündüz, O. (2007). Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32(1), 35–41. https://doi.org/10.1016/j.energy.2006.01.007
dc.relation.isbasedonFarrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253–281. https://doi.org/10.2307/2343100
dc.relation.isbasedonGOP. (2018). Pakistan Economic Survey 2017–18. Finance Division, Economic Advisor’s Wing: Islamabad, Pakistan. Retrieved from http://www.finance.gov.pk/survey_1718.html
dc.relation.isbasedonHatirli, S. A., Ozkan, B., & Fert, C. (2005). An econometric analysis of energy input-output in Turkish agriculture. Renewable and Sustainable Energy Reviews, 9(6), 608–623. https://doi.org/10.1016/j.rser.2004.07.001
dc.relation.isbasedonHatirli, S. A., Ozkan, B., & Fert, C. (2006). Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy, 31(4), 427–438. https://doi.org/10.1016/j.renene.2005.04.007
dc.relation.isbasedonHeidari, M., Omid, M., & Akram, A. (2011). Using nonparametric analysis (DEA) for measuring technical efficiency in poultry farms. Brazilian Journal of Poultry Science, 13(4), 271–277. https://doi.org/10.1590/S1516-635X2011000400009
dc.relation.isbasedonHu, J.-L., & Kao, C.-H. (2007). Efficient energy-saving targets for APEC economies. Energy Policy, 35(1), 373–382. https://doi.org/10.1016/j.enpol.2005.11.032
dc.relation.isbasedonKhoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2013). Applying Data Envelopment Analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production. Energy, 58, 588–593. https://doi.org/10.1016/j.energy.2013.06.030
dc.relation.isbasedonKitani, O., & Jungbluth, T. (1999). CIGR Handbook of Agricultural Engineering, Volume V: Energy and Biomass Engineering. Gainesville, FL: CIGR International Commission of Agricultural and Biosystems Engineering.
dc.relation.isbasedonKizilaslan, H. (2009). Input-output energy analysis of cherries production in Tokat Province of Turkey. Applied Energy, 86(7–8), 1354–1358. https://doi.org/10.1016/j.apenergy.2008.07.009
dc.relation.isbasedonKousar, R., Makhdum, M. S. A., Yaqoob, S., & Saghir, A. (2006). Economics of energy use in cotton production on small farms in district Sahiwal, Punjab, Pakistan. Journal of Agriculture & Social Science, 2(4), 219–221.
dc.relation.isbasedonKuhn, L., Balezentis, T., Hou, L., & Wang, D. (2018). Technical and environmental efficiency of livestock farms in China: A slacks-based DEA approach. China Economic Review, 62, 101213. https://doi.org/10.1016/j.chieco.2018.08.009
dc.relation.isbasedonLiu, K.-F. (2015). Application of DEA method in the evaluation of agriculture economic efficiency. Journal of Chemical and Pharmaceutical Research, 7(3), 997–1000. Retrieved from http://jocpr.com/vol7-iss3-2015/JCPR-2015-7-3-997-1000.pdf
dc.relation.isbasedonLoghmanpour-Zarini, R., & Abedi-Firouzjaee, R. (2013). Energy and water use indexes for tobacco production under different irrigation systems in Iran. International Journal of Agriculture and Crop Sciences, 5(12), 1332–1339. Retrieved from https://docplayer.net/20346789-Energy-and-water-use-indexes-for-tobacco-production-under-different-irrigation-systems-in-iran.html
dc.relation.isbasedonMandal, K., Saha, K., Ghosh, P., Hati, K., & Bandyopadhyay, K. (2002). Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass and Bioenergy, 23(5), 337–345. https://doi.org/10.1016/S0961-9534(02)00058-2
dc.relation.isbasedonMardani, M., & Salarpour, M. (2015). Measuring technical efficiency of potato production in Iran using robust Data Envelopment Analysis. Information Processing in Agriculture, 2(1), 6–14. https://doi.org/10.1016/j.inpa.2015.01.002
dc.relation.isbasedonMobtaker, H. G., Akram, A., Keyhani, A., & Mohammadi, A. (2012). Optimization of energy required for alfalfa production using Data Envelopment Analysis approach. Energy for Sustainable Development, 16(2), 242–248. https://doi.org/10.1016/j.esd.2012.02.001
dc.relation.isbasedonMohammadi, A., & Omid, M. (2010). Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Applied Energy, 87(1), 191–196. https://doi.org/10.1016/j.apenergy.2009.07.021
dc.relation.isbasedonMohammadi, A., Rafiee, S., Mohtasebi, S. S., Mousavi-Avval, S. H., & Rafiee, H. (2011). Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach. Renewable Energy, 36(9), 2573–2579. https://doi.org/10.1016/j.renene.2010.10.036
dc.relation.isbasedonMohammadi, A., Tabatabaeefar, A., Shahin, S., Rafiee, S., & Keyhani, A. (2008). Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Conversion and Management, 49(12), 3566–3570. https://doi.org/10.1016/j.enconman.2008.07.003
dc.relation.isbasedonMoraditochaee, M. (2012). Study energy indices of tobacco production in north of Iran. Journal of Agricultural and Biological Science, 7(6), 462–465. Retrieved from http://www.arpnjournals.com/jabs/research_papers/rp_2012/jabs_0612_418.pdf
dc.relation.isbasedonMousavi-Avval, H. S., Rafiee, S., Jafari, A., & Mohammadi, A. (2011a). Improving energy use efficiency of canola production using Data Envelopment Analysis (DEA) approach. Energy, 36(5), 2765–2772. https://doi.org/10.1016/j.energy.2011.02.016
dc.relation.isbasedonMousavi-Avval, H. S., Rafiee, S., Jafari, A., & Mohammadi, A. (2011b). Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Applied Energy, 88(11), 3765–3772. https://doi.org/10.1016/j.apenergy.2011.04.021
dc.relation.isbasedonNasiri, S. M., & Singh, S. (2010). A comparative study of parametric and non-parametric energy use efficiency in paddy production. Journal of Agricultural Science and Technology, 12(4), 391–399. https://www.sid.ir/en/journal/ViewPaper.aspx?id=180618
dc.relation.isbasedonOzkan, B., Kurklu, A., & Akcaoz, H. (2004). An input-output energy analysis in greenhouse vegetable production: a case study for Antalya region of Turkey. Biomass and Bioenergy, 26(1), 89–95. https://doi.org/10.1016/S0961-9534(03)00080-1
dc.relation.isbasedonPahlavan, R., Omid, M., & Akram, A. (2011) Energy use efficiency in greenhouse tomato production in Iran. Energy, 36(12), 6714–6719. https://doi.org/10.1016/j.energy.2011.10.038
dc.relation.isbasedonPahlavan, R., Omid, M., Rafiee, S., & Mousavi-Avval, S. H. (2012). Optimization of energy consumption for rose production in Iran. Energy for Sustainable Development, 16(2), 236–241. https://doi.org/10.1016/j.esd.2011.12.001
dc.relation.isbasedonPishgar-Komleh, S. H., Ghahderijani, M., & Sefeedpari, P. (2012). Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production, 33, 183–191. https://doi.org/10.1016/j.jclepro.2012.04.008
dc.relation.isbasedonPishgar-Komleh, S. H., Zylowski, T., Rozakis, S., & Kozyra, J. (2020). Efficiency under different methods for incorporating undesirable outputs in an LCA+DEA framework: A case study of winter wheat production in Poland. Journal of Environmental Management, 260, 110138. https://doi.org/10.1016/j.jenvman.2020.110138
dc.relation.isbasedonRafiee, S., Mousavi-Avval, S. H., & Mohammadi, A. (2010). Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy, 35(8), 3301–3306. https://doi.org/10.1016/j.energy.2010.04.015
dc.relation.isbasedonSeiford, L. M., & Thrall, R. M. (1990). Recent developments in DEA: The mathematical programming approach to frontier analysis. Journal of Econometrics, 46(1–2), 7–38. https://doi.org/10.1016/0304-4076(90)90045-U
dc.relation.isbasedonShahbandeh, M. (2020). Tobacco production worldwide 2018, by country. Statista. https://www.statista.com/statistics/261173/leading-countries-in-tobacco-production/
dc.relation.isbasedonSingh, G., Singh, S., & Singh, J. (2004). Optimization of energy inputs for wheat crop in Punjab. Energy Conversion and Management, 45(3), 453–465. https://doi.org/10.1016/S0196-8904(03)00155-9
dc.relation.isbasedonSingh, S., Mittal, J. P., Singh, M. P., & Bakhshi, R. (1988). Energy-use patterns under various farming systems in Punjab. Applied Energy, 30(4), 261–268. https://doi.org/10.1016/0306-2619(88)90013-X
dc.relation.isbasedonThanassoulis, E. (1993). A comparison of regression analysis and Data Envelopment Analysis as alternative methods for performance assessments. Journal of the Operational Research Society, 44(11), 1129–1144. https://doi.org/10.2307/2583874
dc.relation.isbasedonTone, K. (2001). A slacks-based measure of efficiency in Data Envelopment Analysis. European Journal of Operational Research, 130(3), 498–509. https://doi.org/10.1016/S0377-2217(99)00407-5
dc.relation.isbasedonUnakıtan, G., & Aydın, B. (2018). A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region. Energy, 149, 279–285. https://doi.org/10.1016/j.energy.2018.02.033
dc.relation.isbasedonWang, G., Lin, N., Zhou, X., Li, Z., & Deng, X. (2018). Three-Stage Data Envelopment Analysis of Agricultural Water Use Efficiency: A Case Study of the Heihe River Basin. Sustainability, 10(2), 568. https://doi.org/10.3390/su10020568
dc.relation.isbasedonWei, W., Mushtaq, Z., Ikram, A., Faisal, M., Wan-Li, Z., & Ahmad, M. I. (2020a). Estimating the Economic Viability of Cotton Growers in Punjab Province, Pakistan. SAGE Open, 10(2), 2158244020929310. https://doi.org/10.1177%2F2158244020929310
dc.relation.isbasedonWei, W., Mushtaq, Z., Faisal, M., & Wan-Li, Z. (2020b). Estimating the economic and production efficiency of cotton growers in Southern Punjab, Pakistan. Custos e Agronegocio, 16(2), 2–21. Retrieved from http://www.custoseagronegocioonline.com.br/numero2v16/OK%201%20cotton%20english.pdf
dc.relation.isbasedonWei, W., Mushtaq, Z., Sharif, M., Zeng, X., Wan-Li, Z., & Qaisrani, M. A. (2020c). Evaluating the coal rebound effect in energy intensive industries of China. Energy, 207, 118247. https://doi.org/10.1016/j.energy.2020.118247
dc.relation.isbasedonYang, M., Hou, Y., Ji, Q., & Zhang, D. (2020). Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach. Energy Economics, 91, 104931. https://doi.org/10.1016/j.eneco.2020.104931
dc.relation.isbasedonZhang, X., Huang, G. H., Lin, Q., & Yu, H. (2009). Petroleum-contaminated groundwater remediation systems design: A Data Envelopment Analysis based approach. Expert Systems with Applications, 36(3), 5666–5672. https://doi.org/10.1016/j.eswa.2008.06.136
dc.relation.isbasedonZhou, P., Ang, B. W., & Poh, K. L. (2008). A survey of Data Envelopment Analysis in energy and environmental studies. European Journal of Operational Research, 189(1), 1–18. https://doi.org/10.1016/j.ejor.2007.04.042.
dc.relation.ispartofEkonomie a Managementcs
dc.relation.ispartofEconomics and Managementen
dc.relation.isrefereedtrue
dc.rightsCC BY-NC
dc.subjectenergy efficiencyen
dc.subjectenergy inputsen
dc.subjectData Envelopment Analysisen
dc.subjectenergy consumptionen
dc.subjectenergy saving potentialsen
dc.subjectenergy conservationen
dc.subjectslacked based super efficiencyen
dc.subject.classificationQ01
dc.subject.classificationQ56
dc.subject.classificationQ42
dc.titleEVALUATING ENERGY CONSUMPTION EFFICIENCY IN TOBACCO PRODUCTION: APPLYING DATA ENVELOPMENT ANALYSISen
dc.typeArticleen
local.accessopen
local.citation.epage39
local.citation.spage23
local.facultyFaculty of Economics
local.fulltextyes
local.relation.abbreviationE+Mcs
local.relation.abbreviationE&Men
local.relation.issue3
local.relation.volume24
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EM_3_2021_02.pdf
Size:
706.03 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections