The controller for the temperature chamber with Peltier cell

Abstract
The work describes one of the ways of controlling the solid-state heat or cold generator called as Peltier module by designing a dual H-Bridge circuit and controlling the electric properties for the Peltier module by signaling suitable MOSFET driver with the help of readily available microcontroller to fulfil the generated temperatures as per the expectations inside the thermally insulated box. Firstly, the requirements of the cooling and heating capacities to be achieved is decided and the taken into considerations to choose the proper electrical hardware and constructing a PCB for integrating the components into it, following with a suitable circuit configuration for changing the electric parameters to the Peltier mod-ule for applying heat or removing heat on same side to maintain the prescribed temperature by the user. The change in electric parameters is decided by the suitable readily available commercially microcontroller by generating PWM signals to the respective digital pins for the MOSFET drivers. The digital temperature sensors DS18b20+ are used to get feed-back on the generated temperatures from the enclosed box. The suitable user interface is been de-signed for setting up the required temperature inside the box and get data on the display. While the main parameters generated temperatures and set temperatures are transferred to the Arduino cloud for data logging and also to manipulate the required temperatures remotely. In the present work the Peltier modules are used to apply heat or remove heat in the same thermally insulated box by con-trolling the direction and the flow of the current as per the requirements.
The work describes one of the ways of controlling the solid-state heat or cold generator called as Peltier module by designing a dual H-Bridge circuit and controlling the electric properties for the Peltier module by signaling suitable MOSFET driver with the help of readily available microcontroller to fulfil the generated temperatures as per the expectations inside the thermally insulated box. Firstly, the requirements of the cooling and heating capacities to be achieved is decided and the taken into considerations to choose the proper electrical hardware and constructing a PCB for integrating the components into it, following with a suitable circuit configuration for changing the electric parameters to the Peltier mod-ule for applying heat or removing heat on same side to maintain the prescribed temperature by the user. The change in electric parameters is decided by the suitable readily available commercially microcontroller by generating PWM signals to the respective digital pins for the MOSFET drivers. The digital temperature sensors DS18b20+ are used to get feed-back on the generated temperatures from the enclosed box. The suitable user interface is been de-signed for setting up the required temperature inside the box and get data on the display. While the main parameters generated temperatures and set temperatures are transferred to the Arduino cloud for data logging and also to manipulate the required temperatures remotely. In the present work the Peltier modules are used to apply heat or remove heat in the same thermally insulated box by controlling the direction and the flow of the current as per the requirements.
Description
Subject(s)
Peltier effect, Seebeck effect, Thermoelectric, Controller, MOSFET, H-Bridge, Driver, PCB, DC/DC Convertor, Sensor, UART, PID, Algorithm.
Citation
ISSN
ISBN