Sustainability criteria assessment for life-cycle phases of petroleum refinery projects by MADM technique

dc.contributor.authorGholipour, Yaghob
dc.contributor.authorHasheminasab, Hamidreza
dc.contributor.authorKharrazi, Mohammad
dc.contributor.authorStreimikis, Justas
dc.contributor.otherEkonomická fakultacs
dc.date.accessioned2018-09-10
dc.date.accessioned2018-09-13T08:33:32Z
dc.date.available2018-09-13T08:33:32Z
dc.description.abstractPRI projects have large impacts on various sustainability attributes in different phases. A comprehensive assessment of these impacts for project’s life-cycle is of great importance. The proposed methodology has created the required framework for such assessment by using Concept Mapping, Focus Group, and Multi-Attribute Decision Making Techniques. Petroleum refinery industry (PRI) is comprised of a chain of expertise and engineering disciplines and is also connected to various other industries. Consequently, apart from its physical products that fulfill the fuel needs of the society, PRI has a great contribution to economic development and to the prosperity of different businesses. On the negative side, however, PRI is one of the primary contributors to global warming and other environmental issues and could have some unwelcome effects on the society as well. Hence, development of these projects should be done with careful assessment of their life-long impacts from a sustainability viewpoint. In this study, a sustainability framework for PRI projects, which was developed and presented in a previous publication, is used in a multiphase methodology to assess the relationship between life-cycle phases and sub-phases of a petroleum refinery on one hand, and sustainability indicators and factors on the other hand. As a result of this study, critical sustainability factors can be highlighted, to help managers and industry experts consider long-term sustainability consequences in their decision making process. The proposed methodology has been applied to a real petroleum refinery project, using an MADM-based scenario approach, to assess the correlation between sustainability factors and various life-cycle phases and sub-phases of the refinery. Based on the results, the most important phase in the petroleum refinery life-cycle with regards to all three pillars of sustainability is found to be the operation phase. As such, implementation of various operation phase sustainability aspects should be the first priority of stakeholders during design, procurement, construction, and operation phases.en
dc.formattext
dc.format.extent13 strancs
dc.identifier.doi10.15240/tul/001/2018-3-005
dc.identifier.eissn2336-5604
dc.identifier.issn1212-3609
dc.identifier.urihttps://dspace.tul.cz/handle/15240/26630
dc.language.isoen
dc.publisherTechnická Univerzita v Libercics
dc.publisherTechnical university of Liberec, Czech Republicen
dc.publisher.abbreviationTUL
dc.relation.ispartofAhmad, W. N. K. W., Rezaei, J., de Brito, M. P., & Tavasszy, L. A. (2016). The influence of external factors on supply chain sustainability goals of the oil and gas industry. Resources Policy, 49, 302-314. https://doi.org/10.1016/j.resourpol.2016.06.006.cs
dc.relation.ispartofAngelis-Dimakis, A., Arampatzis, G., & Assimacopoulos, D. (2012). Monitoring the sustainability of the Greek energy system. Energy for Sustainable Development, 16(1), 51-56. https://doi.org/10.1016/j.esd.2011.10.003.cs
dc.relation.ispartofBa-Shammakh, M. S. (2010). Generalized mathematical model for SO2 reduction in an oil refinery based on arabian light crude oil. Energy & Fuels, 24(6), 3526-3533. https://doi.org/10.1021/ef1001869.cs
dc.relation.ispartofBrown, L. R. (1982). Building a sustainable society. Society, 19(2), 75-85. https://doi.org/10.1007/BF02712913.cs
dc.relation.ispartofCarson, R. (1962). Silent Spring. New York: Houghton Mifflin Company.cs
dc.relation.ispartofde Castro Hilsdorf, W., de Mattos, C. A., & de Campos Maciel, L. O. (2017). Principles of sustainability and practices in the heavy-duty vehicle industry: A study of multiple cases. Journal of Cleaner Production, 141, 1231-1239. https://doi.org/10.1016/j.jclepro.2016.09.186.cs
dc.relation.ispartofFelix, M., & Gheewala, S. H. (2012). Environmental assessment of electricity production in Tanzania. Energy for Sustainable Development, 16(4), 439-447. https://doi.org/10.1016/j.esd.2012.07.006.cs
dc.relation.ispartofFerreira, G., López-Sabirón, A. M., Aranda, J., Mainar-Toledo, M. D., & Aranda-Usón, A. (2015). Environmental analysis for identifying challenges to recover used reinforced refractories in industrial furnaces. Journal of Cleaner Production, 88, 242-253. https://doi.org/10.1016/j.jclepro.2014.04.087.cs
dc.relation.ispartofFerreira, F. A. F., Jalali, M. S., Zavadskas, E. K., Meidute-Kavaliauskiene, I. (2017). Assessing Payment Instrument Alternatives Using Cognitive Mapping and the Choquet Integral. Transformations in Business and Economics, 16(2(41)), 170-188.cs
dc.relation.ispartofFilipović, S., & Golušin, M. (2015). Environmental taxation policy in the EU–new methodology approach. Journal of Cleaner Production, 88, 308-317. https://doi.org/10.1016/j.jclepro.2014.03.002.cs
dc.relation.ispartofGeorge, R. A., Siti-Nabiha, A. K., Jalaludin, D., & Abdalla, Y. A. (2016). Barriers to and enablers of sustainability integration in the performance management systems of an oil and gas company. Journal of Cleaner Production, 136, 197-212. https://doi.org/10.1016/j.jclepro.2016.01.097.cs
dc.relation.ispartofHadidi, L. A., AlDosary, A. S., Al-Matar, A. K., & Mudallah, O. A. (2016). An optimization model to improve gas emission mitigation in oil refineries. Journal of Cleaner Production, 118, 29-36. https://doi.org/10.1016/j.jclepro.2016.01.033.cs
dc.relation.ispartofHalaby, A., Ghoneim, W., & Helal, A. (2017). Sensitivity analysis and comparative studies for energy sustainability in sewage treatment. Sustainable Energy Technologies and Assessments, 19, 42-50. https://doi.org/10.1016/j.seta.2016.11.004.cs
dc.relation.ispartofHall, R. P. (2006). Understanding and applying the concept of sustainable development to transportation planning and decision-making in the US. Doctoral dissertation, Massachusetts Institute of Technology.cs
dc.relation.ispartofHasheminasab, H., Gholipour, Y., Kharrazi, M., & Streimikiene, D. (2018). A novel Metric of Sustainability for petroleum refinery projects. Journal of Cleaner Production, 171, 1215-1224. https://doi.org/10.1016/j.jclepro.2017.09.223.cs
dc.relation.ispartofHashemkhani Zolfani, S., Maknoon, R., & Zavadskas, E. K. (2016). Multiple attribute decision making (MADM) based scenarios. International Journal of Strategic Property Management, 20(1), 101-111. https://doi.org/10.3846/1648715X.2015.1132487.cs
dc.relation.ispartofHeravi, G., Fathi, M., & Faeghi, S. (2015). Evaluation of sustainability indicators of industrial buildings focused on petrochemical projects. Journal of Cleaner Production, 109, 92-107. https://doi.org/10.1016/j.jclepro.2015.06.133.cs
dc.relation.ispartofHiremath, R. B., Balachandra, P., Kumar, B., Bansode, S. S., & Murali, J. (2013). Indicator-based urban sustainability—A review. Energy for sustainable development, 17(6), 555-563. https://doi.org/10.1016/j.esd.2013.08.004.cs
dc.relation.ispartofHolmgren, K., & Sternhufvud, C. (2008). CO2-emission reduction costs for petroleum refineries in Sweden. Journal of Cleaner Production, 16(3), 385-394. https://doi.org/10.1016/j.jclepro.2006.11.008.cs
dc.relation.ispartofJovanovic, J., Jovanovic, M., Jovanovic, A., & Marinovic, V. (2010). Introduction of cleaner production in the tank farm of the Pancevo Oil Refinery, Serbia. Journal of Cleaner Production, 18(8), 791-798. https://doi.org/10.1016/j.jclepro.2010.01.002.cs
dc.relation.ispartofMahmoud, A., & Shuhaimi, M. (2013). Systematic methodology for optimal enterprise network design between bio-refinery and petroleum refinery for the production of transportation fuels. Energy, 59, 224-232. https://doi.org/10.1016/j.energy.2013.06.026.cs
dc.relation.ispartofMissimer, M., Robèrt, K. H., & Broman, G. (2017). A strategic approach to social sustainability–Part 1: exploring the social system. Journal of Cleaner Production, 140, 32-41. https://doi.org/10.1016/j.jclepro.2016.03.170.cs
dc.relation.ispartofMissimer, M., Robèrt, K. H., & Broman, G. (2017). A strategic approach to social sustainability–Part 2: a principle-based definition. Journal of Cleaner Production, 140, 42-52. https://doi.org/10.1016/j.jclepro.2016.04.059.cs
dc.relation.ispartofMusango, J. K., & Brent, A. C. (2011). A conceptual framework for energy technology sustainability assessment. Energy for Sustainable Development, 15(1), 84-91. https://doi.org/10.1016/j.esd.2010.10.005.cs
dc.relation.ispartofNeelis, M. (2008). Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry-An ENERGY STAR (R) Guide for Energy and Plant Managers.cs
dc.relation.ispartofOoba, M., Hayashi, K., Fujii, M., Fujita, T., Machimura, T., & Matsui, T. (2015). A long-term assessment of ecological-economic sustainability of woody biomass production in Japan. Journal of Cleaner Production, 88, 318-325. https://doi.org/10.1016/j.jclepro.2014.09.072.cs
dc.relation.ispartofPapajohn, D., Brinker, C., & El Asmar, M. (2016). MARS: Metaframework for assessing ratings of sustainability for buildings and infrastructure. Journal of Management in Engineering, 33(1), https://doi.org/10.1061/(ASCE)ME.1943-5479.0000478.cs
dc.relation.ispartofShen, L. Y., Ochoa, J. J., Shah, M. N., & Zhang, X. (2011). The application of urban sustainability indicators–A comparison between various practices. Habitat International, 35(1), 17-29. https://doi.org/10.1016/j.habitatint.2010.03.006.cs
dc.relation.ispartofShen, L., Wu, Y., & Zhang, X. (2010). Key assessment indicators for the sustainability of infrastructure projects. Journal of construction engineering and management, 137(6), 441-451. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000315.cs
dc.relation.ispartofShortall, R., Davidsdottir, B., & Axelsson, G. (2015). Development of a sustainability assessment framework for geothermal energy projects. Energy for Sustainable Development, 27, 28-45. https://doi.org/10.1016/j.esd.2015.02.004.cs
dc.relation.ispartofSierra, L. A., Pellicer, E., & Yepes, V. (2015). Social sustainability in the lifecycle of chilean public infrastructure. Journal of Construction Engineering and Management, 142(5). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001099.cs
dc.relation.ispartofSilajdžić, I., Kurtagić, S. M., & Vučijak, B. (2015). Green entrepreneurship in transition economies: a case study of Bosnia and Herzegovina. Journal of Cleaner Production, 88, 376-384. https://doi.org/10.1016/j.jclepro.2014.07.004.cs
dc.relation.ispartofSilvestre, B. S., & Gimenes, F. A. P. (2017). A sustainability paradox? Sustainable operations in the offshore oil and gas industry: The case of Petrobras. Journal of Cleaner Production, 142, 360-370. https://doi.org/10.1016/j.jclepro.2016.07.215.cs
dc.relation.ispartofStamford, L., & Azapagic, A. (2014). Life cycle sustainability assessment of UK electricity scenarios to 2070. Energy for sustainable Development, 23, 194-211. https://doi.org/10.1016/j.esd.2014.09.008.cs
dc.relation.ispartofStelzer, B., Meyer-Brötz, F., Schiebel, E., & Brecht, L. (2015). Combining the scenario technique with bibliometrics for technology foresight: The case of personalized medicine. Technological Forecasting and Social Change, 98, 137-156. https://doi.org/10.1016/j.techfore.2015.06.008.cs
dc.relation.ispartofStjepcevic, J., Siksnelyte, I. (2017). Corporate Social Responsibility in Energy Sector. Transformations in Business and Economics 16(1(40)), 21-34.cs
dc.relation.ispartofStreeten, P. (2001). Globalisation: Threat or opportunity? (pp. 30). Copenhagen: Copenhagen Business School Press.cs
dc.relation.ispartofWang, Y., Shi, X., Sun, J., & Qian, W. (2014). A grey interval relational degree-based dynamic multiattribute decision making method and its application in investment decision making. Mathematical Problems in Engineering. https://doi.org/10.1155/2014/607016.cs
dc.relation.ispartofYao, H., Shen, L., Tan, Y., & Hao, J. (2011). Simulating the impacts of policy scenarios on the sustainability performance of infrastructure projects. Automation in Construction, 20(8), 1060-1069. https://doi.org/10.1016/j.autcon.2011.04.007.cs
dc.relation.ispartofZavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and economic development of economy, 20(1), 165-179. https://doi.org/10.3846/20294913.2014.892037.cs
dc.relation.ispartofEconomics and Managementen
dc.relation.isrefereedtrue
dc.rightsCC BY-NC
dc.subjectsustainability assessmenten
dc.subjectpetroleum refineryen
dc.subjectlife-cycle modelingen
dc.subjectMulti-criteria decision makingen
dc.subjectMADMen
dc.subject.classificationQ01
dc.subject.classificationQ35
dc.subject.classificationQ51
dc.titleSustainability criteria assessment for life-cycle phases of petroleum refinery projects by MADM techniqueen
dc.typeArticleen
local.accessopen
local.citation.epage87
local.citation.spage75
local.facultyFaculty of Economics
local.filenameEM_3_2018_05
local.fulltextyes
local.relation.abbreviationE+Mcs
local.relation.abbreviationE&Men
local.relation.issue3
local.relation.volume21
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EM_3_2018_05.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Description:
Článek
Collections