An evaluation model of business intelligence for enterprise systems with new extension of codas (codas-ivif)

dc.contributor.authorHeidary Dahooei, Jalil
dc.contributor.authorKazimieras Zavadskas, Edmundas
dc.contributor.authorVanaki, Amir Salar|Firoozfar, Hamid Reza
dc.contributor.authorKeshavarz-Ghorabaee, Mehdi
dc.contributor.otherEkonomická fakultacs
dc.date.accessioned2018-09-10
dc.date.accessioned2018-09-13T08:33:34Z
dc.date.available2018-09-13T08:33:34Z
dc.description.abstractDue to today's dynamic and changing environment and the organization need to decide in emergencies and accurate analysis of the internal and external environment from different aspects, creating a decision support environment is considered as a vital factor for the success of organizations that is achieved using business intelligence. Hence, it is necessary to have enterprise systems at a reasonable level of business intelligence to provide an environment suitable for supporting decision makers through aggregation and analysis of data in their database. Therefore, this study provides a novel assessment framework of BI for enterprise systems, by extending of CODAS method with interval-valued intuitive fuzzy sets. The CODAS is a new method for multiple attribute decision making (MADM) problems. In the proposed model, a number of 34 criteria from the most important BI indexes are identified and, accordingly, five enterprise systems are evaluated through expert discussions. The results reveal that the most important assessment criteria defined by expert panels include visual graph display, dashboard design, capable of data storage, meeting stakeholder needs, and the possibility for detailed realistic analysis. Then, one alternative is defined as the final selection which provides an outstanding performance on the criteria of groupware programs, group decision-making tools, training techniques, data transfer capability, knowledge inference, supporting fuzzy concepts under ambiguity and uncertainty, real-time analytical processing, managing email channels, and achieving stakeholder satisfaction. The results obtained from the extended method are compared with three different ranking techniques. And, the analysis of correlation coefficients confirms similarity between this solution and such methods as COPRAS-IVIF and MABAC-IVIF.en
dc.formattext
dc.format.extent17 strancs
dc.identifier.doi10.15240/tul/001/2018-3-011
dc.identifier.eissn2336-5604
dc.identifier.issn1212-3609
dc.identifier.urihttps://dspace.tul.cz/handle/15240/26636
dc.language.isoen
dc.publisherTechnická Univerzita v Libercics
dc.publisherTechnical university of Liberec, Czech Republicen
dc.publisher.abbreviationTUL
dc.relation.ispartofAlter, S. (2004). Work system view of DSS in its fourth decade. Decision Support, 38, 319-327. https://doi.org/10.1016/j.dss.2003.04.001.cs
dc.relation.ispartofAruldoss, M., Lakshmi Travis, M., & Prasanna Venkatesan, V. (2014). A survey on recent research in business intelligence. Journal of Enterprise Information Management, 27(6), 831-866. https://doi.org/10.1108/JEIM-06-2013-0029.cs
dc.relation.ispartofAtanassov, K., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy sets and systems, 31(3), 343-349. https://doi.org/10.1016/0165-0114(89)90205-4.cs
dc.relation.ispartofBoran, F. E., Genç, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy groupdecision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36(8), 11363-11368. https://doi.org/10.1016/j.eswa.2009.03.039.cs
dc.relation.ispartofBose, R. (2009). Advanced analytics: opportunities and challenges. Industrial Management & Data Systems, 109(2), 155-172. https://doi.org/10.1108/02635570910930073.cs
dc.relation.ispartofChang, V. (2014). The business intelligence as a service in the cloud. Future Generation Computer Systems, 37, 512-534. https://doi.org/10.1016/j.future.2013.12.028.cs
dc.relation.ispartofChen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS quarterly, 36(4), 1165-1188.cs
dc.relation.ispartofDoll, W. J., & Torzadeh, G. (1988). The measurement of end-user satisfaction. MIS Quarterly, 12(2), 259-274. https://doi.org/10.2307/248851.cs
dc.relation.ispartofDuan, L., & Da Xu, L. (2012). Business intelligence for enterprise systems: a survey. IEEE Transactions on Industrial Informatics, 8(3), 679-687. https://doi.org/10.1109/TII.2012.2188804.cs
dc.relation.ispartofGangadharan, G. R., & Swami, S. N. (2004). Business intelligence systems: design and implementation strategies. In 26th International Conference In Information Technology Interfaces (pp. 139-144). IEEE.cs
dc.relation.ispartofGarg, H. (2017). Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Engineering Applications of Artificial Intelligence, 60, 164-174. https://doi.org/10.1016/j.engappai.2017.02.008.cs
dc.relation.ispartofGhazanfari, M., Jafari, M., & Rouhani, S. (2011). A tool to evaluate the business intelligence of enterprise systems. Scientia Iranica, 18(6), 1579-1590. https://doi.org/10.1016/j.scient.2011.11.011.cs
dc.relation.ispartofHolsapple, C., Lee-Post, A., & Pakath, R. (2014). A unified foundation for business analytics. Decision Support Systems, 64, 130-141. https://doi.org/10.1016/j.dss.2014.05.013.cs
dc.relation.ispartofIşık, Ö., Jones, M. C., & Sidorova, A. (2013). Business intelligence success: The roles of BI capabilities and decision environments. Information & Management, 50(1), 13-23. https://doi.org/10.1016/j.im.2012.12.001.cs
dc.relation.ispartofKershavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., Hooshmand, R., & Antuchevičienė, J. (2017). Fuzzy extension of the CODAS method for multi-criteria market segment evaluation. Journal of Business Economics and Management, 18(1), 1-19. https://doi.org/10.3846/16111699.2016.1278559.cs
dc.relation.ispartofKershavarz Ghorabaee, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation & Economic Cybernetics Studies & Research, 50(3).cs
dc.relation.ispartofKrohling, R. A., & Pacheco, A. G. (2014). Interval-valued intuitionistic fuzzy TODIM. Procedia Computer Science, 31, 236-244. https://doi.org/10.1016/j.procs.2014.05.265.cs
dc.relation.ispartofLin, Y. H., Tsai, K. M., Shiang, W. J., Kuo, T. C., & Tsai, C. H. (2009). Research on using ANP to establish a performance assessment model for business intelligence systems. Expert Systems with Applications, 36(2), 4135-4146. https://doi.org/10.1016/j.eswa.2008.03.004.cs
dc.relation.ispartofLiu, D. (2010). Extension principles for interval-valued intuitionistic fuzzy sets andalgebraic operations. Fuzzy Optimization and Decision Making, 10(1), 45-58. https://doi.org/10.1007/s10700-010-9095-9.cs
dc.relation.ispartofLiu, W. J., Lin, Z. Z., Wen, F. S., & Ledwich, G. (2012). Intuitionistic fuzzy Choquet integral operator-based approach for black-start decision making. Generation, Transmission & Distribution, 6(5), 378-386. https://dx.doi.org/10.1049/iet-gtd.2011.0609.cs
dc.relation.ispartofLönnqvist, A., & Pirttimäki, V. (2006). The measurement of business intelligence. Information systems management, 23(1), 32-40. https://dx.doi.org/10.1201/1078.10580530/45769.23.1.20061201/91770.4.cs
dc.relation.ispartofMassa, S., & Testa, S. (2005). Data warehouse-in-practice: exploring the function of expectations in organizational outcomes. Information & Management, 42(5), 709-718. https://doi.org/10.1016/j.im.2004.06.002.cs
dc.relation.ispartofOlszak, C. M., & Ziemba, E. (2007). Approach to building and implementing business intelligence systems. Interdisciplinary Journal of Information, Knowledge, and Management, 2(1), 135-148. https://doi.org/10.28945/105.cs
dc.relation.ispartofPopovič, A., Hackney, R., Coelho, P. S., & Jaklič, J. (2012). Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729-739. https://doi.org/10.1016/j.dss.2012.08.017.cs
dc.relation.ispartofPower, D. J. (2008). Understanding data-driven decision support systems. Information Systems Management, 25(2), 149-154. https://doi.org/10.1080/10580530801941124.cs
dc.relation.ispartofRazavi Hajiagha, S. H., Hashemi, S. S., & Zavadskas, E. K. (2013). A complex proportional assessment method for group decision making in an interval-valued intuitionistic fuzzy environment. Technological and Economic Development of Economy, 19(1), 22-37. https://dx.doi.org/10.3846/20294913.2012.762953.cs
dc.relation.ispartofRouhani, S., Ghazanfari, M., & Jafari, M. (2012). Evaluation model of business intelligence for enterprise systems using fuzzy TOPSIS. Expert Systems with Applications, 39(3), 3764-3771. https://doi.org/10.1016/j.eswa.2011.09.074.cs
dc.relation.ispartofRubin, E., & Rubin, A. (2013). The impact of business intelligence systems on stock return volatility. Information & Management, 50(2-3), 67-75. https://doi.org/10.1016/j.im.2013.01.002.cs
dc.relation.ispartofSangari, M. S., & Razmi, J. (2015). Business intelligence competence, agile capabilities, and agile performance in supply chain: An empirical study. The International Journal of Logistics Management, 26(2), 356-380. https://doi.org/10.1108/IJLM-01-2013-0012.cs
dc.relation.ispartofTan, B. W., & Lo, T. W. (1990). Validation of a user satisfaction instrument for office automation success. Information & Management, 18(4), 203-208. https://doi.org/10.1016/0378-7206(90)90041-F.cs
dc.relation.ispartofWang, W., & Liu, X. (2013). The multi-attribute decision making method based on interval-valued intuitionistic fuzzy Einstein hybrid weighted geometric operator. Computers & Mathematics with Applications, 66(10), 1845-1856. https://doi.org/10.1016/j.camwa.2013.07.020.cs
dc.relation.ispartofXu, Z.-S. (2007). Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control and Decision, 22(2), 215-219.cs
dc.relation.ispartofXue, Y. X., You, J. X., Lai, X. D., & Liu, H. C. (2016). An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information. Applied Soft Computing, 38, 703-713. https://doi.org/10.1016/j.asoc.2015.10.010.cs
dc.relation.ispartofYan, S. L., Wang, Y., & Liu, J. C. (2012). Research on the comprehensive evaluation of business intelligence system based on BP neural network. Systems Engineering Procedia, 4, 275-281. https://doi.org/10.1016/j.sepro.2011.11.076.cs
dc.relation.ispartofYeoh, W., & Koronios, A. (2010). Critical success factors for business intelligence systems. Journal of computer information systems, 50(3), 23-32. https://dx.doi.org/10.1080/08874417.2010.11645404.cs
dc.relation.ispartofZavadskas, E. K., Antucheviciene, J., Hajiagha, S., & Hashemi, S. (2014). Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). Applied Soft Computing, 24, 1013-1021. https://doi.org/10.1016/j.asoc.2014.08.031.cs
dc.relation.ispartofEconomics and Managementen
dc.relation.isrefereedtrue
dc.rightsCC BY-NC
dc.subjectbusiness intelligenceen
dc.subjectCODASen
dc.subjectenterprise systemen
dc.subjectCODAS- IVIFen
dc.subjectMADMen
dc.subject.classificationC44
dc.titleAn evaluation model of business intelligence for enterprise systems with new extension of codas (codas-ivif)en
dc.typeArticleen
local.accessopen
local.citation.epage187
local.citation.spage171
local.facultyFaculty of Economics
local.filenameEM_3_2018_11
local.fulltextyes
local.relation.abbreviationE+Mcs
local.relation.abbreviationE&Men
local.relation.issue3
local.relation.volume21
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EM_3_2018_11.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format
Description:
Článek
Collections