Importance Sampling for Monte Carlo Simulation to Evaluate Collar Options under Stochastic Volatility Model
dc.contributor.author | Li, Pengshi | |
dc.contributor.author | Li, Wei | |
dc.contributor.author | Chen, Haidong | |
dc.contributor.other | Ekonomická fakulta | cs |
dc.date.accessioned | 2020-06-04T08:31:47Z | |
dc.date.available | 2020-06-04T08:31:47Z | |
dc.description.abstract | The collar option is one kind of exotic options which is useful when institutional investors wish to lock in the profi t they already have on the underlying asset. Under the constant volatility assumption, the pricing problem of collar options can be solved in the classical Black Scholes framework. However the smile-shaped pattern of the Black Scholes implied volatilities which extracted from options has provided evidence against the constant volatility assumption, so stochastic volatility model is introduced. Because of the complexity of the stochastic volatility model, a closed-form expression for the price of collar options may not be available. In such case, a suitable numerical method is needed for option pricing under stochastic volatility. Since the dimensions of state variable are usually more than two after the introduction of another volatility diffusion process, the classical fi nite difference method seems ineffi cient in the stochastic volatility scenario. For its easy and fl exible computation, Monte Carlo method is suitable for evaluating option under stochastic volatility. This paper presents a variance reduction method for Monte Carlo computation to estimate collar option under stochastic volatility model. The approximated price of the collar option under fast mean reverting stochastic volatility model is derived from the partial differential equation by singular perturbation technique. The importance sampling method based on the approximation price is used to reduce the variance of the Monte Carlo simulation. Numerical experiments are carried out under the context of different mean reverting rate. Numerical experiment results demonstrate that the importance sampling Monte Carlo simulation achieves better variance reduction effi ciency than the basic Monte Carlo simulation. | en |
dc.format | text | |
dc.identifier.doi | 10.15240/tul/001/2020-2-010 | |
dc.identifier.eissn | 2336-5604 | |
dc.identifier.issn | 1212-3609 | |
dc.identifier.uri | https://dspace.tul.cz/handle/15240/154924 | |
dc.language.iso | en | |
dc.publisher | Technická Univerzita v Liberci | cs |
dc.publisher | Technical university of Liberec, Czech Republic | en |
dc.publisher.abbreviation | TUL | |
dc.relation.isbasedon | Agarwal, A., Juneja, S., & Sircar, R. (2016). American options under stochastic volatility. Quantitative Finance, 16(1), 17–30. https://doi. org/10.1080/14697688.2015.1068443 | |
dc.relation.isbasedon | Bates, D. (1991). The Crash of 87: Was it expected? The evidence from option markets. The Journal of Finance, 46(3), 1009–1044. https://doi.org/10.1111/j.1540-6261.1991. tb03775.x | |
dc.relation.isbasedon | Boyle, P. (1977). Option: A Monte Carlo approach. Journal of Financial Economics, 4(3), 323–338. https://doi.org/10.1016/0304- 405X(77)90005-8 | |
dc.relation.isbasedon | Broadie, M., & Glasserman, P. (1996). Estimating Security Price Derivatives Using Simulation. Management Science, 42(2), 269–285. http://dx.doi.org/10.1287/mnsc.42.2.269 | |
dc.relation.isbasedon | Du, K., Liu, G., & Gu, G. (2013). A class of control variates for pricing Asian options under stochastic volatility models. IAENG International Journal of Applied Mathematics, 42(2), 45–53. | |
dc.relation.isbasedon | Fouque, J. P., & Han, C. H. (2004). Variance reduction for Monte Carlo methods to evaluate option prices under multi-factor stochastic volatility models. Quantitative Finance, 4(5), 597–606. http://dx.doi. org/10.1080/14697680400000041 | |
dc.relation.isbasedon | Fouque, J. P., & Han, C. H. (2007). A martingale control variate method for option pricing with stochastic volatility. ESAIM: Probability and Statistics, 11, 40–54. http://dx.doi.org/10.1051/ps:2007005 | |
dc.relation.isbasedon | Fouque, J. P., & Han, C. H. (2007). A martingale control variate method for option pricing with stochastic volatility. ESAIM: Probability and Statistics, 11, 40–54. http://dx.doi.org/10.1051/ps:2007005 | |
dc.relation.isbasedon | Fouque, J. P., Papanicolaou, G., & Sircar, R. (2000). Mean-reverting stochastic volatility. International Journal of Theoretical and Applied Finance, 3(1), 101–142. http://dx.doi. org/10.1142/S0219024900000061 | |
dc.relation.isbasedon | Fouque, J. P., Papanicolaou, G., Sircar, R., & Solna, K. (2003). Singular perturbations in option pricing. SIAM Journal on Applied Mathematics, 63(5), 1648–1665. http://dx.doi. org/10.1137/S0036139902401550 | |
dc.relation.isbasedon | Fu, M. C., Laprise, S. B., Madan, D. B., Su. Y., & Wu, R. W. (2001). Pricing American options: a comparison of Monte Carlo simulation approaches. The Journal of Computational Finance, 4(3), 39–88. http://dx.doi.org/10.21314/JCF.2001.066 | |
dc.relation.isbasedon | Giles, M. (2008). Multilevel Monte Carlo path simulation. Operations Research, 56(3), 607– 617. http://dx.doi.org/10.1287/opre.1070.0496 | |
dc.relation.isbasedon | Glasserman, P., Heidelberger, P., & Shahabuddin, P. (1999). Asymptotically optimal importance sampling and Stratifi cation for Pricing Path-Dependent Options. Mathematical Finance, 9(2), 117–152. http://dx.doi. org/10.1111/1467-9965.00065 | |
dc.relation.isbasedon | Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343. http://dx.doi.org/10.1093/rfs/6.2.327 | |
dc.relation.isbasedon | Hull, J. C., & White, A. (1987). The pricing of options on assets with stochastic volatilities. The Journal of Finance, 42(2), 281–300. https://doi.org/10.1111/j.1540-6261.1987.tb02568.x | |
dc.relation.isbasedon | Kassim, K. B., Lelong, J., & Loumrhari, I. (2015). Importance Sampling for Jump Processes and Applications to Finance. The Journal of Computational Finance, 19(2), 109–139. http://dx.doi.org/10.21314/JCF.2015.292 | |
dc.relation.isbasedon | Lai, Y. Z., Li, Z. F., & Zeng, Y. (2015). Control variate methods and applications to Asian and Basket options under jump-diffusion models. IMA Journal of Management Mathematics, 26(1), 11–37. http://dx.doi.org/10.1093/imaman/dpt016 | |
dc.relation.isbasedon | Liang, S., Garvin, M. J., & Kumar, R. (2010). Collar options to manage revenue risks in real toll public-private partnership transportation projects. Construction Management and Economics, 28(10), 1057–1069. https://doi.org /10.1080/01446193.2010.506645 | |
dc.relation.isbasedon | Liu, Q. (2010). Pricing American options by canonical least-square Monte Carlo. Journal of Futures Markets, 30(2), 175–187. http://dx.doi. org/10.1002/fut.20409 | |
dc.relation.isbasedon | Longstaff, F., & Schwartz, E. (2001). Valuing American Options by Simulation: A Simple Least-Squares Approach. Review of Financial Studies, 14(1), 113–147. http://dx.doi. org/10.1093/rfs/14.1.113 | |
dc.relation.isbasedon | Ma, J. M., & Xu, C. L. (2010). An effi cient control variate method for pricing variance derivatives. Journal of Computational and Applied Mathematics, 235(1), 108–119. http://dx.doi.org/10.1016/j.cam.2010.05.017 | |
dc.relation.isbasedon | Rogers, L. C. G. (2002). Monte Carlo valuation of American options. Mathematical Finance, 12(3), 271–286. http://doi. org/10.1111/1467-9965.02010 | |
dc.relation.isbasedon | Scott, L. O. (1987). Option pricing when the variance changes randomly: theory, estimation and an application. Journal of Financial and Quantitative Analysis, 22, 419–438. http://dx.doi.org/10.2307/2330793 | |
dc.relation.isbasedon | Stein, E. M., & Stein, J. C. (1991). Stock price distribution with stochastic volatility: an analytic approach. Review of Financial Studies, 4(4), 727–752. https://doi.org/10.1093/ rfs/4.4.727 | |
dc.relation.isbasedon | Su, Y., & Fu, M. C. (2000). Importance sampling in derivative securities pricing. 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165). http://dx.doi. org/10.1109/WSC.2000.899767 | |
dc.relation.ispartof | Ekonomie a Management | cs |
dc.relation.ispartof | Economics and Management | en |
dc.relation.isrefereed | true | |
dc.rights | CC BY-NC | |
dc.subject | importance sampling | en |
dc.subject | Monte Carlo simulation | en |
dc.subject | collar options | en |
dc.subject | stochastic volatility | en |
dc.subject.classification | C40 | |
dc.title | Importance Sampling for Monte Carlo Simulation to Evaluate Collar Options under Stochastic Volatility Model | en |
dc.type | Article | en |
local.access | open | |
local.citation.epage | 155 | |
local.citation.spage | 144 | |
local.faculty | Faculty of Economics | |
local.filename | EM_2_2020_10 | |
local.fulltext | yes | |
local.relation.abbreviation | E+M | cs |
local.relation.abbreviation | E&M | en |
local.relation.issue | 2 | |
local.relation.volume | 23 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- EM_2_2020_10.pdf
- Size:
- 1011.57 KB
- Format:
- Adobe Portable Document Format
- Description:
- článek