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Abstract: The collar option is one kind of exotic options which is useful when institutional 
investors wish to lock in the profi t they already have on the underlying asset. Under the constant 
volatility assumption, the pricing problem of collar options can be solved in the classical Black 
Scholes framework. However the smile-shaped pattern of the Black Scholes implied volatilities 
which extracted from options has provided evidence against the constant volatility assumption, 
so stochastic volatility model is introduced. Because of the complexity of the stochastic volatility 
model, a closed-form expression for the price of collar options may not be available. In such case, 
a suitable numerical method is needed for option pricing under stochastic volatility. Since the 
dimensions of state variable are usually more than two after the introduction of another volatility 
diffusion process, the classical fi nite difference method seems ineffi cient in the stochastic volatility 
scenario. For its easy and fl exible computation, Monte Carlo method is suitable for evaluating 
option under stochastic volatility. This paper presents a variance reduction method for Monte 
Carlo computation to estimate collar option under stochastic volatility model. The approximated 
price of the collar option under fast mean reverting stochastic volatility model is derived from the 
partial differential equation by singular perturbation technique. The importance sampling method 
based on the approximation price is used to reduce the variance of the Monte Carlo simulation. 
Numerical experiments are carried out under the context of different mean reverting rate. Numerical 
experiment results demonstrate that the importance sampling Monte Carlo simulation achieves 
better variance reduction effi ciency than the basic Monte Carlo simulation.
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Introduction
The collar option is one kind of exotic options 
which is useful when institutional investors 
wish to lock in the profi t they already have on 
the underlying asset. Collar options can be 
implemented by investors on the stock they 
have already own. Usually investors will obtain 

the collar when they have enjoyed a decent 
gain on their investment but they want to hedge 
against potential downside in their shares. 
Collar options are very useful and practical 
instruments in revenue management and 
project management. Shan et al. (2010) study 
the use of collar options to manage revenue 
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risks in real toll public-private partnership 
transportation projects, in particular how to 
redistribute the profi t and losses in order to 
improve the effectiveness of risk management 
and fulfi ll the stakeholder’s needs.

Under the constant volatility assumption, 
the pricing problem of collar option can 
be solved in the classical Black Scholes 
framework. However, the smile-shaped pattern 
of the Black Scholes implied volatilities which 
extracted from options has provided evidence 
against the constant volatility assumption in 
the Black Scholes model. Numerous methods 
have been carried out to relax the constant 
volatility assumption. One of these approaches 
is dropping the assumption of constant volatility 
and assumes that the underlying asset is driven 
by a stochastic volatility process. Stochastic 
volatility models were fi rst studied by Hull and 
White (1987), Scott (1987), and Stein and Stein 
(1991). Other stochastic volatility model, like 
Heston (1993) has become important because 
the call price in the Heston model is available 
in closed form. Because of the complexity of 
the assumption, a closed-form expression for 
the option price may not be available. In such 
case, a suitable numerical method is needed 
for option pricing under stochastic volatility. 
Since the dimensions of state variable are 
usually more than two after the introduction of 
another volatility diffusion process, the classical 
fi nite difference method seems ineffi cient in the 
stochastic volatility scenario. For its easy and 
fl exible computation, Monte Carlo method is 
suitable for evaluating option under stochastic 
volatility.

The Monte Carlo method has proven 
particularly useful in the analysis of the risk of 
large portfolios of fi nancial products. A great 
strength of Monte Carlo techniques for risk 
analysis is that they can be easily used to run 
scenario analysis. The Monte Carlo method 
is not only used to analyze fi nancial risks, 
but also plays a critical role in the pricing of 
fi nancial instruments. Monte Carlo methods 
have become an increasingly important tool 
for analyzing fi nancial products, as fi nancial 
products become more and more complex. 
The use of Monte Carlo methods in fi nancial 
derivatives pricing was popularized in Boyle 
(1977), Broadie and Glasserman (1996). Most 
complex derivatives are not known to have 
closed form pricing formula, consequently 
Monte Carlo simulation are employed to solve 

the pricing problem of complex derivatives. 
Longstaff and Schwartz (2001), Rogers (2002), 
Liu (2010) study Monte Carlo simulation in 
the application of pricing American options 
and Bermuda options. The Monte Carlo 
methods are also effective in solving problems 
concerning a number of different sources of 
uncertainty. Giles (2008) uses Monte Carlo 
methods for stochastic differential equations to 
model fi nancial time series.

One of the main advantages of the Monte 
Carlo method is that it is effi cient in pricing 
fi nancial instruments with high dimensions. 
It is widely used in the case that the numbers 
of state variables are greater than two such 
as the stochastic volatility models. Because 
Monte Carlo simulation method is crucial in 
option pricing, there is an important need for 
a numerical approach to provide variance 
reduction. Typical methods for increasing the 
effi ciency of Monte Carlo simulation by reducing 
the variance include control variate method and 
importance sampling method. Glasserman et al. 
(1999) develop a variance reduction technique 
for Monte Carlo simulation of path-dependent 
options driven by high-dimensional Gaussian 
vectors. Su and Fu (2000) formulate the 
importance sampling problem by a combination of 
infi nitesimal perturbation analysis and stochastic 
approximation to minimize the variance of the 
price estimation. Fu et al. (2001) empirically 
test some Monte Carlo simulation based 
algorithms on the pricing of American derivatives 
and introduce a simultaneous perturbation 
stochastic approximation algorithm. By using an 
approximation of the option price, Fouque and 
Tullie (2002) proposed an importance sampling 
method to reduce variance in Monte Carlo 
computation of option price under stochastic 
volatility. Fouque and Han (2004) present 
a variance reduction method for Monte Carlo 
simulation to evaluate option prices under multi-
factor stochastic volatility based on importance 
sampling. Fouque and Han (2007) propose 
a control variate method to price options under 
stochastic volatility by Monte Carlo simulations. 
Ma and Xu (2010) propose an effi cient control 
variate method when the volatility follows 
the log-normal process, and they studied 
the pricing problem of variance swap option 
under stochastic volatility by the control variate 
technique. By constructing the control variate 
method with the order moment of the stochastic 
volatility, Du et al. (2013) study the pricing 
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problem of Asian options under the stochastic 
volatility. Lai et al. (2015) present a control 
variate method with applications to Asian and 
basket options pricing under exponential jump 
diffusion model. Kassim et al. (2015) extend 
the adaptive importance sampling method 
to jump process and proved the effi ciency of 
their method on the valuation of derivatives 
in several jump models. Agarwal et al. (2016) 
developed an effi cient control variate method 
to price American put under stochastic volatility 
model via Monte Carlo simulation.

The method of importance sampling is 
one of the widely used variance reduction 
approaches. Unlike the other variance reduction 
methods, importance sampling is based on the 
idea of changing the underlying probability 
measure from which paths are generated. 
In this paper, we consider the importance 
sampling method developed by Fouque et 
al. (2002) for accelerating the Monte Carlo 
simulation to the pricing problem of the collar 
option under fast mean-reverting stochastic 
volatility. The main idea of this method is using 
the singular perturbation technique to derive 
the approximated formula of the collar option 
price, and then this approximation formula 
can be applied to the importance sampling 
method. The rest of this paper is organized as 
follows. A class of stochastic volatility models 
is introduced in section 1. Section 2 includes 
a general description of the importance 
sampling method and its application in the 
Monte Carlo simulation for collar option pricing. 
Numerical experiments comparing the basic 
Monte Carlo and importance sampling Monte 
Carlo simulation are given in Section 3. And the 
fi nal section concludes the paper.

1. Stochastic Volatility Model Setting
Denoting St as the underlying asset price at time t. 
The mean-reverting process Yt evolves as an 
Ornstein-Uhlenbeck (OU) process. Denoting Wt 
and Zt as two independent standard Brownian 
motions and ρ is the correlation coeffi cient 
between these two Brownian motions. Under 
the risk-neutral world probability measure P*, 
the model can be written as:

*( )t t t t tdS rS dt f Y S dW    (1)

* 2 *

2

[ ( ) 2 ( )] 2 ( 1 )

                     ( ) 1
( )

t t t t t

t

dY m Y v Y dt v dW dZ
ry

f y

    
  

      



    
   

(2)

The motivation of model (1) and (2) is 
to refl ect some observed features of the 
underlying asset’s volatility. One feature of 
volatility is bounded and mean reversion. In 
(1) we denote the volatility of the underlying 
asset as ( )t tf Y  , where ( )f y  is some is 
some positive and bounded function, because 
in reality the volatility is range-bound. For 
instance, the 30-days realized volatility for the 
S&P 500 from 2005 through 2014 was never 
below 5% or above 82%. It is often noted in 
empirical studies of stock prices that volatility 
is fl uctuating fast and mean reverting. From 
the fi nancial perspective, mean reverting 
refers to a linear pull back term in the drift of 
the volatility process, hence the OU process 
in (2) is s used to describe the mean-reverting 
stochastic variables. The driving volatility Yt is 
a mean-reverting process with a rate of mean 
reversion α, the mean level of its invariant 
distribution and the “volatility of the volatility” 

2v   corresponding to a long run standard 
deviation v. The invariant distribution of Yt is 
the normal distribution N  m v . The drift 
term pulls Yt toward m and σt is expected to 
be pulled toward the mean value of ( )tf Y . 
The rate of mean-reversion is governed by the 
parameter α, the greater the α is the stronger 
the mean reversion. As noted by Fouque et al. 
(2000) the empirical evidence from S&P 500 
shows that the parameter is large and that v2 is 
a stable O (1) constant. In the following we will 
be interested in the scenario where α is large, 
hence Yt is a fast mean-reverting process on 
a short time scale 1 / α, and we will compute 
the price of the collar option by Monte Carlo 
simulation for fi nite values of α.

Another feature considered is the volatility 
shocks are often negatively correlated with asset 
price shocks. From common experience and 
empirical studies, when volatility goes up, asset 
prices tend to go down and vice-versa. This is 
often referred to as leverage effect and there are 
economic arguments for a negative correlation 
between asset price and volatility shocks, 
hence the instantaneous correlation coeffi cient 
ρ < 0 between two shocks is considered. The 
skewed distribution for historical stock price is 
documented in empirical studies by Bates (1991) 
and the leverage effect can partially account for 
skewed distribution for the asset price that zero-
correlation stochastic volatility models do not 
exhibit. The process γt  which is assumed to be 
adapted and suitably regular is called the market 
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price of volatility risk or volatility risk premium 
from the second source of random shock. The 
function Λ in (2) can be considered as the total 
risk premium because it is a linear combination 
of the stochastic Sharpe ratio   / ( )r f y   
and the volatility risk premium γ weighted by the 
correlation ρ and 21  , where μ represents 
the constant mean return rate and r represents 
a constant instantaneous interest rate.

Under the risk-neutral probability measure P*, 
the process (St ,Yt) is a Markov process. The no 
arbitrage price of the collar option at time t is the 
conditional expectation of the discounted payoff at 
time T given that the present value of the underlying 
asset St = s and the present value of the process 
driving the volatility Yt = y. Denoting the price of 
the collar option at time t < T as  , ,V t s y , the 
price of the collar option with stochastic volatility 
is given as, the expectation E*    is computed 
under risk-neutral measure P*:

  
 

*

*

( )
1 2

( )

( , , ) min max , , | , }

            

{

{ | , }

r T t
T t t

r T t
T t t

V t s y e S K K S s Y y

e S S s Y y

 

 

  

  

E

E  
(3)

where we defi ne     1 2min max , ,s s K K  . 
 s  is the payoff of a collar option at expiry 

time T, where K2 > K1 > 0 and ST is the 
underlying asset price at expiration time. By 
the Feynman-Kac formula, the pricing function 
given by (3) can be obtained as the solution of 
the partial differential equation below:

2 2
2 2 2

2 2

2

1( ) ( ) [( ) ]
2

     2 ( ) 2 ( ) 0

V V V V Vr s V f y s m y v
t s ys y

V Vv f y s v y
s y y



 

    
     

   

 
   

     

(4)

with the terminal condition as:

 ( , , )V T s y s   (5)

Considering a small quantity denoted as 
1/   and 0 1  . By introducing the 

following operators:

2
2

0 2( )m y v
y y
 

  
 

L
 

(6)

2

1 2[ ( ) ( ) ]v f y s y
s y y

  


  
L  (7)

2
2 2

2 2

1 ( )
2

f y s rs r
t ss
  
  

 
L  (8)

the partial differential equation (4) involves 
terms of order 1 / ε, 1/   and 1 becomes:

0 1 2
1( 1 ) 0V


  L L L  (9)

The problem (9) is called a singular 
perturbation problem owing to the diverging 
terms when ε goes zero, keeping the time 
derivatives in L2 of order 1. The solution 
V has a limit as ε goes to zero and it is able 
to characterize the fi rst correction for small 
but nonzero ε. By the method of singular 
perturbation of the partial differential equation, 
the approximated price of the collar option 
can be obtained. The details of this singular 
perturbation method can be referred to Fouque 
et al. (2003).

The approximated price of the collar option 
is Ṽ (t,s,y) 0 1( , ) ( , )V t s V t s  , where ε = 1 / α  
and 0 < ε ≤ 1. In particularly,  0 ,V t s  does not 
depend on y and it is given by:

   
   

1 1

2 2

( ) ( )
0 1 1 1 2

( )
1 2 2

( , )

                             

K Kr T t r T t

K Kr T t

V t s K e sN d K e N d

sN d K e N d
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 

  

 
 

(10)

where 
  2

1

ln / ( / 2)( )
i iK s K r T t

d
T t




  


 , 

2 1
i iK Kd d T t   . ( 1, 2)i   and  N   is the 

cumulative standard normal distribution and 
  is a constant effective volatility which is the 
average with respect to the invariant distribution 
of Y.  1 ,V t s  is also independent of y and 

1( , )V t s  can be expressed as:

2 3
2 30 0

1 1 22 3( , ) ( )( )
V V

V t s T t C s C s
s s


 

   
   (11)

where C1 and C2 are two parameters which 
can be calibrated from implied volatility 
surface. From the results of (10) and (11), by 
direct calculation, we can easily obtain the 
approximated price:
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   
 
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Ṽ(t,s,y)
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where N    is the standard normal probability 
density function. The details of the proof are 
provided in the Appendix A. This approximated 
price can be used to implement the importance 
sampling variance reduction technique.

2. Importance Sampling for Collar 
Option

According to (1) and (2) the evolution of  ,t tS Y  
under the risk-neutral measure P* can be 
presented in the matrix form as following:

dXi = μ(t, Xt)dt + ∑(t,Xt )dBt (13)

we set the following vectors:
*

*,  ,  t t
t t

t t

Ss W
x X B

Yy Z
   

      
       

and defi ne the drift vector:

( , )
( ) 2 ( )

rs
t x

m y v y


 

 
        

and defi ne the diffusion matrix:

2

( ) 0
( , )

2 2 (1 )

f y s
t x

v v   

 
       

where Bt is a standard 2-dimensional Brownian 
motion under P*, 2( , )t x R  and 2 2( , )t x  R  
are regular enough to ensure the existence and 
uniqueness of the solution. Denoting the value 
of the collar option at expiration as VT , the price 
 , ,V t s y  of the collar option with stochastic 

volatility at time t can be rewritten as:

  * ( )( , ) |r T t
tTe XV t x S x   E

  * ( ) |r T t
tTVx e X x   E

 
(14)

Hence the basic Monte Carlo simulation for 
(14) can be approximated by calculating the 
sample mean in the following way:

 ( ) ( )

1

1( , ) r T t k
N

k
Te SV t x

N
 



 

  ( ) ( )
1

1
2

1 min max ,  ,  r
N

k

T t k
TN

e S K K



 
 

(15)

where ( ) ( 1, 2, , )k
TS k N   are independent 

realizations of the underlying asset price at time 
T, and N is the total number of independent 
realizations of the underlying asset price 

process. Given  , tt X  is an adapted R2 valued 
process, we consider the following process:

2

0 0

1exp ( , ) ( , )
2

t t

t u u uu X dB u X du      
    

and suppose that E*( ) 1T  . Defi ning 
a probability measure P* equivalent to P* by 
means of the Radon-Nikodym derivative:

*

*

1

T

d
d 


P
P  

then by Girsanov’s theorem, the process tB , 
which is given by the following formula:

0
( , )

t

t t uB B u X du    

follows a standard 2-dimensions Brownian 
motion under the new measure P*. Under this 
new measure the evolution of the processes Xt 
and Yt can be written in terms of the Brownian 
motion tB  as the following:
 

 ( , ) ( , ) ( , )t t t tdX t X t X t X dt   

( , )t tt X dB   
(16)

( , )t t t td t X dB     (17)

According to the abstract version of Bayes’s 
formula, the price of the collar option at time 
can be written with respect to the new measure 
P* as:

  * ( )( |, ) r T t
T T te St x xV X   E  (18)

Then the Monte Carlo simulation for the 
approximation of (18) can be calculated in the 
following manner:

 ( ) ( ) ( )

1

1( , ) r T t k
N

T
k

T
k

V t x
N

e S  



 

  ( ) ( () )

1
1 2

1 min max ,  ,  r T t k
T

N
k

T
k

e S K
N

K  



 
 

(19)

where 
( )k
TS  and 

( )k
T  are the k-th independent 

realization of process St and ηt at time T 
respectively. In order to simplify the notation, 
we denote  ,t x  as μ,  ,t x  as ∑, and 
 ,V t x  as V; we further denote the gradient of 

the state variables of  ,V t x  and the Hessian 
of the state variable of  ,V t x  as the following:

d P*

d P*

E*
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,  

V VV
s yssV V

V V V
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   
               
         

 

Lemma 1: Assuming that the quantity 
 ,V t x  was known and the function  ,t x  is 

expressed as follow:

 1( , )
( , )

Tt x V
V t x

    
 

(20)

then the variance of ϕ(ST )ηT is zero, where ∑T 
is transpose of ∑.

Proof: According to Ito’s formula, we can compute:

       

   

21( , ) ( , ) ( , ) ( , ) ( , )
2

              ( , ) ( , ) ( , ) ( , )

T
t t t t t t

t t t t t

VdV t X t X t X t X V V dt V t X dB
t

rV t X t X t X V dt V t X dB

 



            
 

       

The second equality is the result of applying Feyman-Kac formula on (14) to obtain:

   21( , ) ( , )
2

T
t t

V t X V V rV t X
t


      



From the result of (17) we know that:

   
 

 

( , ) ( , ) ( , ) ( , ) ( , )

                    ( , ) ( , )

                    ( , ) ( , )

t t t t t t t t t

t t t t t

t t t

d dV t X t X dB rV t X t X V dt V t X dB

t X dB V t X dB

t X t X V dt

   

 

 

            
         

    

By the Ito product rule we can compute:

 
   

 

( , ) ( , ) ( , ) ( , )

                     ( , ) ( , ) ( , ) ( , )

                        ( , ) ( , ) ( , ) ( , )

                     

t t t t t t t t

t t t t t t t

t t t t t t t

d V t X dV t X V t X d d dV t X

rV t X t X t X V dt V t X dB

V t X t X dB t X t X V dt

   

  

   

  

      

    

 ( , ) ( , ) ( , ) ( , )

                     ( , ) ( , ) ( , ) ( , )
t t t t t t t t t

T
t t t t t t t t t

r V t X dt V t X dB V t X t X dB

r V t X dt t X V dB V t X t X dB

   

   

      

      

and the following result

     
 

( , ) ( , ) ( , )

                          ( , ) ( , ) ( , )

rt rt rt
t t t t t t

rt T
t t t t t t

d e V t X V t X d e e d V t X

e t X V dB V t X t X dB

  

 

  



 

     
 

In order to obtain  T TS  , we can integrate above equation from 0 to time T, we have:

 0 0
( , ) (0, ) ( , ) ( , ) ( , )

TrT ru T
T T u u u u ue V T X V X e u X V V u X u X dB        

EM_2_2020.indd   149EM_2_2020.indd   149 1.6.2020   16:39:461.6.2020   16:39:46



150 2020, XXIII, 2

Finance

or:

 0 0

( ) ( , )

            (0, ) ( , ) ( , ) ( , )

T T T T
TrT rT ru T

u u u u u

S V T X

e V X e e u X V V u X u X dB

  

 



     

According to Ito isometry, the variance of ( )T TS   can be easily obtain:

   *

2* 2 2

0

2Var ( ) ( , ) ( , ) ( , )rT T
T T u

T ru
u u uS e u X V V ue X u duX     P

E
 

Hence if ( , )V t x  was known, then (20) is the 
optimal choice for ( , )tt X  which gives the zero 
variance of ( )T TS  .

By using the approximated price V  ̃        (t, x) in (20),
we can implement the Monte Carlo simulation 
according to (19).

3. Numerical Computation
From (10) in section 1, we know that the delta 
of the approximated price of the collar option 
under stochastic volatility is:

2
0 0

1 2( ) 2
V VV T t C s

s s s
 

     

%

3 3 4
2 2 30 0 0

1 2 23 3 43
V V V

C s C s C s
s s s

  
        

(21)

By the result of we can compute the 
following, see Appendix A.

2 3 3 4
2 2 30 0 0 0

2 3 3 42 ,  ,  3 ,  
V V V V

s s s s
s s s s

   
     

Note that V0 and V1 are independent of y  hence:

,  ,  0
T T

V V VV
s y s

     
          

% % %%

By substituting Ṽ in lemma 1, we have:

2

( ) 21( , , )
0 2 (1 )

f y s v
t s y

V v

 


 

 
 
  

%

1 ( )

0 0

V Vf y s
s sV

    
       

      

% %

%
 

(22)

In the following numerical experiment, we 
will compare the variance for the basic Monte 
Carlo simulation and the variance for the 
importance sampling Monte Carlo simulation. 
The basic Monte Carlo simulation refers to 
calculate the price of the collar option under 
measure P*, is based on calculating the sample 
mean by (15). The importance sampling Monte 
Carlo simulation refers to calculate the option 
price under measure P*, is based on calculating 
the sample by (19), when the optimal choice 
of γ is obtained through (22). Euler scheme is 
employed to simulate the discretization of the 
diffusion process of Xt which will be used in the 
basic and importance sampling Monte Carlo 
simulation. The numerical experiment is based 
on the following relevance parameters (Fouque 
& Tullie, 2002):
 

2.6,   1,   0.3,   0.2,m v       

1 21,   0,   50,   150T t K K     

The rate of mean-reverting α is assumed 
to range from α = 50 to α = 400. The 
volatility risk price Λ(y) is chosen to be 
zero; the volatility function is assumed to 
be ( ) max min ,0.5 ,0.0001yf y e       which 
ensures that the volatility is bounded. The 
starting values of the diffusion process are 
chosen to be S0 = 110 and Y0 = -2.32. Total 
number of realizations is N = 500 in each 
simulation with time step Δt = 10–3. The 
algorithm implementation steps are provided 
in Appendix B. The result of the numerical 
experiment is presented in the following tables.

It can be easily observed from the results 
of Tab. 1 that importance sampling Monte Carlo 
successfully reduce the variance of the option 
price. Furthermore, the variance reduction is 
more signifi cant in the regime where the rate 
of mean-reversion is large. Tab. 2 and Tab. 3 

Ṽ

Ṽ  = Ṽ Ṽ Ṽ 



Ṽ

Ṽ

Ṽ

Ṽ








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demonstrate the comparison of Monte Carlo 
simulation of variance and option price between 
basic Monte Carlo and importance sampling 
Monte Carlo. The mean-reversion rate is fi xed 
at 100 and 200 while the effective volatility   
ranges from 0.1 to 0.25. The variance reduction 
is also signifi cant, but unlike the case of different 
mean-reversion rate, the effective volatility 
seems independent of the performance of 
variance reduction.

Fig. 1 shows the numerical result of two 
Monte Carlo simulations as a function of the 
number of realizations with the mean-reversion 
rate equal to 100. It can be clearly shown by 

the fi gure that the basic Monte Carlo simulation 
performs poorly when compared to the 
importance sampling Monte Carlo simulation.

Conclusions
In this paper, we study the importance sampling 
variance reduction technique in the pricing 
problem of collar option under the context of 
fast mean-reverting stochastic volatility. The 
importance sampling technique in this paper 
is based on the approximation of the option 
price which was derived from the pricing 
partial differential equation by the singular 
perturbation. The numerical experiment for 

α Basic Monte Carlo Importance sampling Monte Carlo
400 1.211321 (106.59) 0.040211 (106.64)

200 1.042794 (107.87) 0.018769 (107.84)

100 0.535174 (108.45) 0.030871 (108.33)

50 0.786324 (108.60) 0.030489 (108.53)

Source: own

 Basic Monte Carlo Importance sampling Monte Carlo

0.25 0.481509 (108.589) 0.008291 (108.299)

0.20 0.594106 (108.2456) 0.036746 (108.2492)

0.15 0.55949 (108.1709) 0.040022 (108.3748)

0.10 0.465523 (107.7254) 0.011623 (108.3127)

Source: own

 Basic Monte Carlo Importance sampling Monte Carlo

0.25 0.460534 (107.733) 0.0192175 (107.7128)

0.20 0.711191 (107.807) 0.0163262 (107.7302)

0.15 1.32531 (107.7402) 0.014895 (107.8398)

0.10 0.718793 (107.924) 0.0281919 (107.9423)

Source: own

Tab. 1: Comparison of Monte Carlo simulation of variance and option price 
with different α 

Tab. 2: Comparison of Monte Carlo simulation of variance and option price 
with different   when α = 100 

Tab. 3: Comparison of Monte Carlo simulation of variance and option price 
with different   when α = 200 
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the collar option demonstrates the signifi cant 
reduction of the option price variance from the 
basic Monte Carlo simulation to the importance 
sampling Monte Carlo simulation. This method 
can be easily carried out on other derivatives.
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As shown by Fouque et al. (2003), under the assumption that   is large and 0 1  , the 
approximated price of the collar option can be given explicitly by:

 

2 3
2 30 0

0 1 0 1 12 3( )
V V

V V V V T t C s C s
x x


  

        
%

 

where V0 is the Black-Scholes price with constant volatility  . The payoff of the collar option at 
expiration is:

  0 1 2 1 1 2( , ) min max , , ( ) ( )T TV T s s K K K S K S K      

It can be easily seen that the arbitrage price of the collar option at t < T, can be explicitly 
represented by:

( )
0 1 1 2( , ) ( , ; ) ( , ; )r T tV t s K e C t s K C t s K     

where ( , ; )iC t s K  is the Black-Scholes call option price with strike price Ki, and constant volatility  . 
Hence the Black Scholes price with constant volatility   is given as (10). From the result of (10), 
the fi rst derivative of V0 respect to s can be obtained as follows:

1 20
1 1( ) ( )K KV

N d N d
s


 



By direct computation, we can obtain the following results:

 1 2

2
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 
 

1 1 2 23
2 0 1 1 1 1

3

( ) ( )
1 1

K K K KV n d d n d ds
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1 1 1

2 2 2
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3 0 1 1 1
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1 1 1

1 13 3/2
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2 1
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           2 1

1           ( ) ( )
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  



  
         

  
    

    

     

by direct calculation, we can easily obtain the approximated price (12).

Appendix A

Ṽ =
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When Ṽ is derived, Monte Carlo simulation can be implemented according to (19). From the results 
of the approximated price of collar option which is given by (12), we can obtain the expression 
of Ṽ / s which is shown as (21). In the numerical experiment, we assume Λ(y) is negligible 
and ( ) max min ,0.5 ,0.0001f y e     . From the results of (16), (17), (22) and the preceding 
assumptions, the processes of η, S and Y can be written as:

1 *(( / ) )tY
t t t td e S V s V dW     % %

  2 1 *(( / ) )t tY Y
t t t t tdS rS e S V s V dt S e dW    % %

 1 * 2 *( ) 2 (( / ) ) 2 ( 1 )tY
t t t t tdY m Y v e S V s V dt v dW dZ            % %

Next, we use Euler scheme to simulate the discretization of the above diffusion process and 
carry out the importance sampling Monte Carlo simulation according to the following steps.

Step 1: Set the initial value of η, S, Y. Set the following for time step Δt and other parameters.
Step 2: Generate two independent standard normal variables z1 and z2, then construct another 

random variable as:

2
1 21z z z      

Step 3: Simulate a potential price path under the stochastic volatility price processes by the 
following Euler scheme:

1

1
1( ) (( / ) ) )

i i i i it t t t t if Y S V s V t z  


    % %

 1

2 2 1
1( ) (( / ) ) ( )

i i i i i i it t t t t i t tS S rS f Y S V s V t f Y S t z


       % %

 1

1( ) 2 ( ) (( / ) ) 2
i i i i it t t t t iY Y m Y f Y S V s V t t z    


        % %
 

Step 4: Loops step 2 and step 3 to produce simulated paths and obtain ( )k
TS  and ( )k

T  at the end 
of each path, where ( )k

TS  and ( )k
T  are the k-th independent simulated values at expiration time T.

Step 5: Average the discounted prices to obtain the fi nal result by:

 
   ( )( ( )

1

)
1 2min max ,  ,  1r T t k

N

TT
k

kN
e S K K 



  
 

Appendix B

((Ṽ / s)Ṽ-1)

((Ṽ / s)Ṽ-1)

((Ṽ / s)Ṽ-1)

((Ṽ / s) Ṽ-1)

((Ṽ / s) Ṽ-1)

((Ṽ / s) Ṽ-1)
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