Numerical simulation of aeroelastic effects for an airfoil with two degrees of freedom

Title Alternative:Numerická simulace aeroelastických účinků pro profil křídla s druhým stupněm volnosti
dc.contributor.authorPátý, Marek
dc.contributor.authorHalama, Jan
dc.date.accessioned2019-07-09T08:11:43Z
dc.date.available2019-07-09T08:11:43Z
dc.date.issued2019
dc.description.abstractZvyšování výkonu parních turbín vede k návrhu nízkotlakých stupňů o velkém průměru, vyznačujících se dlouhými a tenkými lopatkami. Interakce pevných těles s prouděním může způsobit vibrace, které mají za následek sníženou životnost stroje kvůli únavě materiálu. Tato práce představuje matematický model interakce pevného tělesa s tekutinou, navržený za účelem zkoumání vibrací způsobených prouděním. Model je zde aplikován na zjednodušený testovací případ osamoceného profilu leteckého křídla. Model proudění je založen na Eulerových rovnicích v Arbitrary Lagrange-Euler formulaci, diskretizovaných metodou konečných objemů. Jeho validace je provedena prostřednictvím srovnání s experimentálními daty a s numerickými výsledky jiných autorů.cs
dc.description.abstractDie Erhöhung der Leistung von Dampfturbinen führt zum Entwurf von Niedrigdruckgraden mit einem großen Durchschnitt. Diese Grade zeichnen sich durch lange und dünne Schaufeln aus. Die Interaktion der Festkörper mit der Strömung kann Vibrationen erzeugen, welche eine kürzere Lebensdauer der Maschine auf Grund von Materialermüdung zur Folge haben. Diese Arbeit stellt ein mathematisches Modell der Interaktion des festen Körpers mit Flüssigkeit vor, welches zum Zweck der Erforschung von durch Strömung verursachten Vibrationen entworfen worden ist. Das Strömungsmodell basiert auf den Eulergleichungen in der Arbitrary Lagrange-Euler-Formulierung, welche durch die Methode der endlichen Inhalte diskretisiert werden. Die Validierung des Strömungsmodells wird mittels Vergleich mit den experimentellen Daten und mit den numerischen Ergebnissen anderer Autoren durchgeführt.de
dc.description.abstractThe pursuit of increased steam turbine power output leads to a design of low pressure stages with large diameters, featuring long and thin blades. The interaction of the structure with flow may induce vibrations, leading to a reduced operational life of the machine due to material fatigue. This work introduces a mathematical model of fluid-structure interaction, intended for the investigation of flow-induced turbine blade vibrations. At present, it is applied to a simplified test case of an isolated airfoil. The flow model is based on 2D Euler equations in Arbitrary Lagrangian-Eulerian formulation, discretized by the Finite Volume Method with a second-order accurate AUSM+-up scheme. The structure is modelled as a solid body with one rotational and one translational degree of freedom. The solution is realized iteratively by a time-marching method with a two-way fluid-structure coupling. In each iteration the airfoil surface pressure is integrated to determine the forces and the torsional moment driving its motion. The position of the airfoil in the next time step is obtained and the flow is resolved on a newly recreated mesh. The results of the present model are validated by comparison with experimental data and with numerical results of other models.en
dc.description.abstractZwiększanie mocy turbin parowych skutkuje projektowaniem stopni niskociśnieniowych o dużej średnicy, charakteryzujących się długimi i cienkimi łopatkami. Interakcja ciał stałych ze strumieniem powietrza (wiatrem) może wywołać drgania, które wpływają na skrócenie okresu wytrzymałości maszyny z powodu zmęczenia materiału. Niniejsze opracowanie przedstawia matematyczny model interakcji ciała stałego z płynem, opracowany w celu badania drgań spowodowanych przepływem powietrza. Model można zastosować do uproszczonego testowania samodzielnego profilu skrzydła samolotu. Model przepływu powietrza bazuje na równaniach Eulera w procedurze Arbritrary Lagrange-Euler (ALE), zdyskretyzowanych metodą objętości skończonych. Jego walidację przeprowadzono w drodze porównania z danymi doświadczalnymi i numerycznymi wynikami innych autorów.pl
dc.formattext
dc.format.extent19 stran
dc.identifier.doi10.15240/tul/004/2019-1-004
dc.identifier.eissn1803-9790
dc.identifier.issn1803-9782
dc.identifier.otherACC_2019_1_04
dc.identifier.urihttps://dspace.tul.cz/handle/15240/152821
dc.language.isoen
dc.licenseCC BY-NC 4.1
dc.publisherTechnická univerzita v Liberci, Česká republikacs
dc.relation.isbasedonCOLLAR, A. R.: The Expanding Domain of Aeroelasticity. The Aeronautical Journal. 1946, Vol. 50, Issue 428, pp. 613–636. DOI: 10.1017/S0368393100120358
dc.relation.isbasedonWICK, T.: Coupling of fully Eulerian and arbitrary Lagrangian-Eulerian methods for fluid-structure interaction computations. Computational Mechanics. 2013, Vol. 52, Issue 5, pp. 1113–1124. DOI: 10.1007/s00466-013-0866-3
dc.relation.isbasedonRZĄDKOWSKI, R.; GNESIN, V.: 3-D inviscid self-excited vibrations of a blade row in the last stage turbine. Journal of Fluids and Structures. 2007, Vol. 23, Issue 6, pp. 858–873. DOI: 10.1016/j.jfluidstructs.2006.12.003
dc.relation.isbasedonPETRIE-REPAR, P.; MAKHNOV, V.; SHABROV, N.; SMIRNOV, E.; GALAEV, S.; ELISEEV, K.: Advanced Flutter Analysis of a Long Shrouded Steam Turbine Blade. In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. 2014, Paper No. GT2014-26874. ISBN 978-0-7918-4577-6. DOI: 10.1115/GT2014-26874
dc.relation.isbasedonSLONE, A. K.; PERICLEOUS, K.; BAILEY, C.; CROSS, M.; BENNETT, C.: A finite volume unstructured mesh approach to dynamic fluid–structure interaction: an assessment of the challenge of predicting the onset of flutter. Applied Mathematical Modelling. 2004, Vol. 28, Issue 2, pp. 211–239. DOI: 10.1016/S0307-904X(03)00142-2
dc.relation.isbasedonKAMAKOTI, R.; SHYY, W.: Fluid–structure interaction for aeroelastic applications. Progress in Aerospace Sciences. 2004, Vol. 40, Issue 8, pp. 535–558. DOI: 10.1016/j.paerosci.2005.01.001
dc.relation.isbasedonSVÁČEK, P.; FEISTAUER, M.; HORÁČEK, J.: Numerical simulation of flow induced airfoil vibrations with large amplitudes. Journal of Fluids and Structures. 2007, Vol. 23, Issue 3, pp. 391–411. DOI: 10.1016/j.jfluidstructs.2006.10.005
dc.relation.isbasedonCORRAL, R.; JAVIER, C.: Development of an Edge-Based Harmonic Balance Method for Turbomachinery Flows. In: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. 2011, Paper No. GT2011-45170. ISBN 978-0-7918-5467-9. DOI: 10.1115/GT2011-45170
dc.relation.isbasedonGNESIN, V. I.; KOLODYAZHNAYA, L. V.; RZADKOWSKI, R.: A numerical modelling of stator–rotor interaction in a turbine stage with oscillating blades. Journal of Fluids and Structures. 2004, Vol. 19, Issue 8, pp. 1141–1153. DOI: 10.1016/j.jfluidstructs.2004.07.001
dc.relation.isbasedonMASSEREY, P.-A.; McBEAN, I.; LORINI, H. Analysis and improvement of vibrational behaviour on the ND37 A last stage blade. VGB Powertech Journal. 2012, Vol. 92, pp. 42–48.
dc.relation.isbasedonTHEODORSEN, T.: Report No. 496: General Theory of Aerodynamic Instability and the Mechanism of Flutter. 1935. Technical Report. NASA Technical Documents.
dc.relation.isbasedonPERRY, B.: Re-Computation of Numerical Results Contained in NACA Report No. 496. 2015. Technical Report. NASA Langley Research Center; Hampton, Virginia, United States.
dc.relation.isbasedonDOI, H.; ALONSO, J. J.: Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery. In: ASME Turbo Expo 2002: Power for Land, Sea, and Air. 2002, Paper No. GT2002-30313. ISBN 0-7918-3609-6. eISBN 0-7918-3601-0. DOI: 10.1115/GT2002-30313
dc.relation.isbasedonNING, W.; HE, L.: Computation of Unsteady Flows Around Oscillating Blades Using Linear and Nonlinear Harmonic Euler Methods. Journal of Turbomachinery. 1998, Vol. 120, Issue 3, pp. 508–514. DOI: 10.1115/1.2841747
dc.relation.isbasedonSANCHES, R. A. K.; CODA, H. B.: On fluid–shell coupling using an arbitrary Lagrangian–Eulerian fluid solver coupled to a positional Lagrangian shell solver. Applied Mathematical Modelling. 2014, Vol. 38, Issue 14, pp. 3401–3418. DOI: 10.1016/j.apm.2013.11.025
dc.relation.isbasedonDONEA, J.; GIULIANI, S.; HALLEUX, J. P.: An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering. 1982, Vol. 33, Issues 1–3, pp. 689–723. DOI: 10.1016/0045-7825(82)90128-1
dc.relation.isbasedonBOFFI, D.; GASTALDI, L.: Stability and geometric conservation laws for ALE formulations. Computer Methods in Applied Mechanics and Engineering. 2004, Vol. 193, Issues 42–44, pp. 4717–4739. DOI: 10.1016/j.cma.2004.02.020
dc.relation.isbasedonSAKSONO, P. H.; DETTMER, W. G.; PERIĆ, D.: An adaptive remeshing strategy for flows with moving boundaries and fluid–structure interaction. International Journal for Numerical Methods in Engineering. 2007, Vol.71, Issue 9, pp. 1009–1050. DOI: 10.1002/nme.1971
dc.relation.isbasedonMAY, M.; MAUFFREY, Y.; SICOT, F.: Numerical flutter analysis of turbomachinery bladings based on time-linearized, time-spectral and time-accurate simulations. In: Proceedings of IFASD 2011 – 15th International Forum on Aeroelasticity and Structural Dynamics. 2011, Paper No. IFASD-2011-080.
dc.relation.isbasedonHÖHN, W.: Numerical Investigation of Blade Flutter at or Near Stall in Axial Turbomachines. In: ASME Turbo Expo 2001: Power for Land, Sea, and Air. 2001, Paper No. 2001-GT-0265. ISBN 978-0-7918-7853-8. DOI: 10.1115/2001-GT-0265
dc.relation.isbasedonSTOREY, P.: Holographic Vibration Measurement of a Rotating Fluttering Fan. In: Proceedings of AIAA/SAE/ASME 18th Joint Propulsion Conference. 1982. DOI: 10.2514/6.1982-1271
dc.relation.isbasedonSLONE, A. K.; BAILEY, C.; CROSS, M.: Dynamic Solid Mechanics Using Finite Volume Methods. Applied Mathematical Modelling. 2003, Vol. 27, Issue 2, pp. 69–87. DOI: 10.1016/S0307-904X(02)00060-4
dc.relation.isbasedonSLONE, A. K.; PERICLEOUS, K.; BAILEY, C.; CROSS, M.: Dynamic fluid–structure interaction using finite volume unstructured mesh procedures. Computers & Structures. 2002, Vol. 80, Issues 5–6, pp. 371–390. DOI: 10.1016/S0045-7949(01)00177-8
dc.relation.isbasedonHONZÁTKO, R.: Numerical Simulations of Incompressible Flows with Dynamical and Aeroelastic Effects. PhD thesis. Czech Technical University in Prague, 2007.
dc.relation.isbasedonLIOU, M.-S.; STEFFEN Jr., Ch. J.: A New Flux Splitting Scheme. Journal of Computational Physics. 1993, Vol. 107, Issue 1, pp. 23–39. DOI: 10.1006/jcph.1993.1122
dc.relation.isbasedonLIOU, M.-S.: A sequel to AUSM, Part II: AUSM+-up for all speeds. Journal of Computational Physics. 2006, Vol. 214, Issue 1, pp. 137–170. DOI: 10.1016/j.jcp.2005.09.020
dc.relation.isbasedonSMITH, R. W.: AUSM(ALE): A Geometrically Conservative Arbitrary Lagrangian–Eulerian Flux Splitting Scheme. Journal of Computational Physics. 1999, Vol. 150, Issue 1, pp. 268–286. DOI: 10.1006/jcph.1998.6180
dc.relation.isbasedonLIOU, M.-S.: A Sequel to AUSM: AUSM+. Journal of Computational Physics. 1996, Vol. 129, Issue 2, pp. 364–382. DOI: 10.1006/jcph.1996.0256
dc.relation.isbasedonDARRACQ, D.; CHAMPAGNEUX, S.; CORJON, A.: Computation of Unsteady Turbulent Airfoil Flows with an Aeroelastic AUSM+ Implicit Solver. In: Proceedings of 16th AIAA Applied Aerodynamics Conference. 1998. DOI: 10.2514/6.1998-2411
dc.relation.isbasedonHIRSCH, Ch.: Numerical Computation of Internal and External Flows. The Fundamentals of Computational Fluid Dynamics. Elsevier, 2007. ISBN 978-0-7506-6594-0. DOI: 10.1016/B978-0-7506-6594-0.X5037-1
dc.relation.isbasedonBENETKA, J.: Měření kmitajíıcího profilu v různě vysokých měřících prostorech. 1981. Technical Report Z-2610/81. Aeronautical Research and Test Institute, Prague, Letňany.
dc.relation.isbasedonLUCHTA, J.: Sborník charakteristik profilů křídel. 1955. Technical Report 1669/55. VTA AZ, Brno.
dc.relation.isbasedonBENETKA, J.; KLADRUBSKÝ, J.; VALENTA, R.: Measurement of NACA 0012 profile in a slotted measurement section. 1998. Technical Report R-2909/98. Aeronautical Research and Test Institute, Prague, Letňany.
dc.relation.isbasedonTRIEBSTEIN, H.: Steady and unsteady transonic pressure distributions on NACA 0012. Journal of Aircraft. 1986, Vol. 23, Issue 3, pp. 213–219. DOI: 10.2514/3.45291
dc.relation.ispartofACC Journalen
dc.relation.isrefereedtrue
dc.subjectaeroelasticityen
dc.subjectturbineen
dc.subjectairfoilen
dc.subjectvibrationsen
dc.subjectarbitrary lagrange-euleren
dc.subjectfinite volume methoden
dc.titleNumerical simulation of aeroelastic effects for an airfoil with two degrees of freedomen
dc.title.alternativeNumerická simulace aeroelastických účinků pro profil křídla s druhým stupněm volnostics
dc.title.alternativeNumerische Simulation aeroelastischer Wirkungen für das Profil der Tragfläche mit dem zweiten Freiheitsgradde
dc.title.alternativeNumeryczna symulacja aeroelastycznego oddziaływania na profil skrzydła z drugim stopniem swobodypl
dc.typeArticleen
local.accessopen
local.citation.epage57
local.citation.spage39
local.fulltextyesen
local.relation.issue1
local.relation.volume25
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ACC_2019_1_04.pdf
Size:
987.97 KB
Format:
Adobe Portable Document Format
Description:
článek