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Abstract 

The pursuit of increased steam turbine power output leads to a design of low pressure stages 

with large diameters, featuring long and thin blades. The interaction of the structure with flow 

may induce vibrations, leading to a reduced operational life of the machine due to material 

fatigue. This work introduces a mathematical model of fluid-structure interaction, intended for 

the investigation of flow-induced turbine blade vibrations. At present, it is applied to a 

simplified test case of an isolated airfoil. The flow model is based on 2D Euler equations in 

Arbitrary Lagrangian-Eulerian formulation, discretized by the Finite Volume Method with a 

second-order accurate AUSM
+
-up scheme. The structure is modelled as a solid body with one 

rotational and one translational degree of freedom. The solution is realized iteratively by a 

time-marching method with a two-way fluid-structure coupling. In each iteration the airfoil 

surface pressure is integrated to determine the forces and the torsional moment driving its 

motion. The position of the airfoil in the next time step is obtained and the flow is resolved on 

a newly recreated mesh. The results of the present model are validated by comparison with 

experimental data and with numerical results of other models. 
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Introduction 

The phenomenon of aeroelasticity was first investigated in the field of aeronautics. Collar [1] 

states that the subjects of structure dynamics and aerodynamics cannot be treated separately 

and they have to be regarded as components of an integral analysis. He defines aeroelasticity 

as a discipline studying the combined effects of aerodynamic, elastic and inertial forces. Its 

role has since been recognized as crucial in a variety of other disciplines, such as civil 

engineering, biomedicine [2] and turbomachinery ([3], [4]). 

The most widely investigated dynamic aeroelastic effect in aeronautics is flutter (see e.g. the 

works [5], [6], [7]), which is also of interest in turbomachinery [8], together with forced 

response analysis [9]. Flutter is a self-excited vibration of structure, caused by the interaction 

of aerodynamic, elastic and inertial forces. The structure aerodynamic loading leads to a 

deformation of the body, which in turn increases the aerodynamic forces. The wing or blade 

thus vibrates with amplitude of oscillations increasing in each cycle, leading to a mechanical 

failure. While no loss of turbine blade due to flutter is known ([4]), it has been reported to 

cause cracking of the blade root [10]. 

The problem of flutter requires considering non-linear behaviour of both flow and elastic 

structure, change of domain and mesh in time, flow viscosity and turbulence effects [7]. 

Efforts have been made in the past to simplify the problem and to restrict the model to include 
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only the most essential effects. The first attempts to solve the flutter problem analytically can 

be traced back to the works of Theodorsen [11], of interest is also the recent examination of 

the model by Perry [12], who introduced a model for aeroelastic flutter behaviour of an airfoil 

with aileron using simplifying assumptions such as potential flow and zero thickness of the 

wing. 

The advance of Computational Fluid Dynamics (CFD) and the rise in computational power 

allowed treating the aeroelasticity problems with numerical approaches. In order to keep the 

computational demands reasonable, flutter was first modelled by superimposing linear 

perturbations to a steady-state nonlinear solution and casting the equations to frequency 

domain. However, the assumption that the steady-state flow is identical with the time-mean 

flow may not always be valid and linear methods are incapable of capturing important non-

linear effects such as large amplitudes of blade motion or strong unsteady shocks ([13], [6]). 

The shortcomings of the harmonic time-linearized method are addressed by the non-linear 

harmonics (NLH) method introduced by Ning and He [14]. The time-mean equations are 

solved simultaneously with the harmonic perturbations and coupled via extra unsteady stress 

terms appearing due to the time-averaging. Ning and He demonstrate on a transonic 

compressor cascade that the NLH method captures successfully the nonlinear effects and 

achieves results close to a time-marching method. 

The inherent drawback of the NLH method is that the unsteadiness is resolved only in a 

limited number of harmonics whose frequency is not a part of the solution and it has to be 

given as an input at the start of the procedure. The full unsteady solution of fluid-structure 

interaction can be obtained by time-marching methods. Traditionally, the structural mechanics 

problems are modelled using Lagrangian description, while the fluid dynamics problems 

usually employ Eulerian description [15]. The moving fluid-domain boundaries in fluid-

structure interaction problems can be conveniently treated by a hybrid Arbitrary Lagrangian-

Eulerian (ALE) description, allowing a deformation of the physical domain independent of 

the fluid particle motion (see e.g. [15], [16], [17]). The stability and accuracy of the numerical 

methods in ALE formulation is closely related to the Geometric Conservation Laws (GCL) 

which require that a constant solution is reproduced exactly. An elaborate analysis of several 

time-advancing schemes in view of GCL is given in [17]. The deformation of the domain 

implies that the grid for the ALE formulation needs to be updated accordingly, posing a third 

problem additionally to the fluid and structure dynamics [15]. A brief summary of grid 

movement techniques is provided in [6], while a complete remeshing may be required for 

large domain deformations [18]. 

As the solution of the complete fluid-structure interaction is very complex, it is often 

simplified by imposing only a one-way coupling between the fluid and structure dynamics. 

The eigenmodes and eigenfrequencies are determined in advance by a structural solver and 

used to prescribe the structure motion for an unsteady fluid dynamics solver ([19], [20]). The 

unsteady aerodynamic load on the structure surface is extracted to compute the energy 

transferred from the fluid to the structure and by comparison with the structural damping to 

evaluate the susceptibility to flutter. The underlying assumption that the effect of aerodynamic 

forces on the change of the structural dynamics properties can be neglected requires that the 

fluid density is by several orders of magnitude lower than that of the solid. This makes the 

method suited for turbomachinery or aeronautics, while it is inapplicable e.g. for 

computational medicine where the fluid and solid densities are similar [2]. However, evidence 

suggests that this approach may fail even in cases with significant density difference [21] and 

a strong fluid-structure coupling should therefore be always included. 

The efforts to avoid modelling of the complete fluid-structure interaction root mainly from the 

incompatibility of the approaches traditionally used to treat isolated structure and fluid 
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dynamics problems. Typically, CFD has been solved with Finite Volume Methods (FVM) and 

computational structural mechanics (CSM) with Finite Element Methods (FEM), differing 

often in solution and discretization techniques [22]. This poses difficulty in transferring data 

across the fluid-structure domain interface, where the aerodynamic surface load imposes a 

boundary condition for structure dynamics and the displacement of the solid body deforms the 

fluid computational domain. A number of works has been published on solving the structure 

and fluid dynamics equations in a compatible fashion, some using the same discretization 

methods for both domains and the others a combination of different ones: Slone et al. [23] 

employed a single Finite Volume Unstructured Mesh discretization strategy for both fluid and 

structure, Sváček [7] and Honzátko [24] computed flow around a solid airfoil with two 

degrees of freedom using FVM- and FEM-based incompressible flow solvers respectively, 

Sanches and Coda [15] discretized flow equations with FEM and modelled the structure with 

FEM shell elements. 

In the present paper, we examine the onset of flutter for a NACA 0012 airfoil modelled as a 

solid body with two degrees of freedom, allowing a translational and a rotational movement. 

The flow around the airfoil is modelled using Euler equations in ALE formulation, discretized 

by the FVM. A time-marching iterative procedure is employed, solving simultaneously the 

unsteady flow and airfoil movement with strong coupling realized via the airfoil aerodynamic 

loads and displacement. As the final intended application of the model is to solve flutter in 

turbomachinery, the employed numerical scheme for approximation of inviscid fluxes needs 

to be capable of resolving compressible flows accurately and of capturing shock-waves 

sharply. A modern flux splitting scheme AUSM+-UP was employed, introduced originally by 

Liou and Steffen [25] as AUSM and modified for the low-speed flow regimes by Liou [26]. 

1 Mathematical Model 

This chapter describes the mathematical model of fluid flow around an oscillating airfoil. 

First, the Euler equations describing the inviscid compressible flow are introduced in ALE 

formulation, including the definition of boundary conditions. Then the motion of the airfoil as 

a solid body with one translational and one rotational degree of freedom is defined together 

with the coupling to the aerodynamic field. 

1.1 Flow Model 

We denote Ω𝑡 the computational domain occupied by fluid at time 𝑡 ∈  ⟨0, 𝑇⟩.We aim to find 

the fluid density 𝜌, velocity 𝑢 = 𝑢(𝑥, 𝑡) and static pressure p for 𝑡 ∈ Ω𝑡 , where u = [u1, u2]
T
 

has two components u1, u2 in the directions of Cartesian axes x1, x2. Further we denote the 

total energy 𝑒𝑡
1

2
(𝑢1

2 + 𝑢2
2), using the notation e for internal energy. 

 
Fig. 1: Domain and boundaries (not in scale). 
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We consider the domain at time 𝑡 = 0 as the reference domain Ω𝑟𝑒𝑓 =  Ω0 and introduce the 

ALE mapping [7]: 

 𝐴𝑡: Ω𝑟𝑒𝑓 → Ω𝑡, 𝑋 → 𝒙(𝑋, 𝑡) = 𝐴𝑡(𝑋), (1) 

describing the time-dependent position 𝑥 ∈  Ω𝑡 of a point from reference domain 𝑋 ∈  Ω𝑟𝑒𝑓. 

The ALE velocity is defined as: 𝑠 =  𝜕𝐴𝑡/𝜕𝑡. We consider the set of Euler equations [27]: 

 ∂

∂𝑡
∫ 𝑾

Ω𝑡

𝑑Ω + ∮ 𝑭(𝑾, 𝒏, 𝒔)
Γ(𝑡)

𝑑Γ = 0, (2) 

where 𝑛 = [𝑛1, 𝑛2]T
 is the surface outward unit normal. The vector of characteristic variables 

W, and the flux vector F are defined as: 

 

𝑾 = [

𝜌
𝜌𝒖
𝜌𝑒𝑡

] , 𝑭 = (𝒖 − 𝒔) ⋅ 𝒏𝑾 − [
0

−𝑝𝒏
−𝑝𝒔 ⋅ 𝒏

]. (3) 

The system of equations is closed by the ideal gas law: 

 

𝑝 = (𝛾 − 1) [𝜌𝑒𝑡 − 𝜌
𝑢1

2 + 𝑢2
2

2
] (4) 

We consider three types of boundary conditions: at the airfoil wall Γ𝑤, at the domain inlet Γ𝑖 

and outlet Γ𝑜 (Fig. 1). The free-slip boundary condition is applied at the airfoil wall by 

imposing the normal component of flow velocity equal to the normal component of wall 

movement velocity (Eq. 5). Freestream conditions are prescribed at the domain inlet (Eq. 6) 

and constant solution in the direction of boundary normal is defined at the outlet (Eq. 7). 

 [(𝒖 − 𝒔) ⋅ 𝒏]Γ𝑤
= 0 (5) 

 𝒖|Γ𝑖
= 𝒖𝐹𝑆, 𝜌|Γ𝑖

= 𝜌𝐹𝑆, 𝑝|Γ𝑖
= 𝑝𝐹𝑆 (6) 

 ∂𝒖

∂𝒏
|

Γ𝑜

= 𝟎,
∂𝜌

∂𝒏
|

Γ𝑜

= 0,
∂𝑝

∂𝒏
|

Γ𝑜

= 0 (7) 

The initial condition for a steady-state computation is described by freestream conditions: 

 [𝜌, 𝒖, 𝑝](𝒙, 0) = [𝜌𝐹𝑆, 𝒖𝐹𝑆, 𝑝𝐹𝑆], 𝒙 ∈ Ω0 (8) 

The unsteady computations are performed by solving the steady-state case first and using the 

solution as initial condition. 
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Fig. 2: Airfoil parameters and position. 

1.2 Airfoil Motion 

The airfoil is modelled as a solid body with two degrees of freedom, allowing movement in a 

vertical direction and a rotation about elastic axis (EA). The equations describing the airfoil 

motion can be derived from Lagrange equations (see e.g. [7]). We consider the nonlinear 

form: 

 𝑚ℎ̈ + 𝑘ℎℎℎ + 𝑆𝜙𝜙̈𝑐𝑜𝑠𝜙 − 𝑆𝜙𝜙2𝑠𝑖𝑛𝜙 + 𝑏ℎℎℎ̇ = 𝐹𝑦, 

𝑆𝜙ℎ̈𝑐𝑜𝑠𝜙 + 𝐼𝜙𝜙̈ + 𝑘𝜙𝜙𝜙 + 𝑏𝜙𝜙𝜙̇ = 𝑀 

(9) 

and the linearized form, valid for small vibration amplitudes of the angle 𝜙 and its 

derivative 𝜙̇: 

 𝑚ℎ̈ + 𝑘ℎℎℎ + 𝑆𝜙𝜙̈ + 𝑏ℎℎℎ̇ = 𝐹𝑦 , 

𝑆𝜙ℎ̈ + 𝐼𝜙𝜙̈ + 𝑘𝜙𝜙𝜙 + 𝑏𝜙𝜙𝜙̇ = 𝑀, 
(10) 

where h is the airfoil vertical displacement (positive in upwards direction), 𝜙 is the airfoil 

rotation angle (positive in counter-clockwise direction), m its mass, 𝑆𝜙 the static moment 

about EA and 𝐼𝜙 the moment of inertia about EA (Fig. 2). The elastic support of the airfoil has 

stiffness 𝑘ℎℎ in vertical and 𝑘𝜙𝜙 in rotational direction with the respective mechanical 

damping denoted as 𝑏ℎℎ and 𝑏𝜙𝜙. The aerodynamic load acting on the airfoil, i.e. the lifting 

force Fy (positive in upwards direction) and the torque M (positive in counter-clockwise 

direction), is calculated by integrating the airfoil pressure distribution obtained from the flow 

solver: 

 
𝑭 = [

𝐹𝑥

𝐹𝑦
] = ∮ −𝑝𝒏𝑑Γ

Γ𝑤

, 𝑀 = ∮ [
𝑥𝐸𝐴 − 𝑥
𝑦 − 𝑦𝐸𝐴

]
Γ𝑤

⋅ 𝒏𝑝𝑑Γ (11) 

2 Numerical Solution 

2.1 Grid 

The computational domain surrounding the NACA 0012 airfoil extends 9 chord lengths 

upstream, 4 chord lengths downstream and 10 chord lengths up and down vertically of the 

airfoil leading edge (LE). Two structured C-type grids with different level of refinement were 
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generated for the numerical solution. The fine grid features 516x49 cells, while the coarse one 

contains 256x24 cells (Fig. 3). The movement of the airfoil in unsteady computations requires 

that the mesh is updated accordingly. We consider two configurations: the reference 

configuration where the airfoil angle and displacement are equal to zero, and another 

configuration where the whole mesh is displaced and rotated as a rigid body with the airfoil. 

 
Fig. 3: Coarse (left) and fine grid (right). 

The instantaneous position of each grid point is a result of linear combination of these two 

configurations: 

 

[
𝑥
𝑦] = 𝑘 [(

𝑥𝑟𝑒𝑓
𝐸𝐴

𝑦𝑟𝑒𝑓
𝐸𝐴 + ℎ

) + 𝑸 (
𝑥𝑟𝑒𝑓 − 𝑥𝑟𝑒𝑓

𝐸𝐴

𝑦𝑟𝑒𝑓 − 𝑦𝑟𝑒𝑓
𝐸𝐴 )] + (1 − 𝑘) [

𝑥𝑟𝑒𝑓

𝑦𝑟𝑒𝑓
], (12) 

where h is the displacement of the airfoil elastic axis and the rotation matrix 𝑸 is defined 

using the airfoil rotation angle 𝜙: 

 
𝑸 = [

𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

]. (13) 

The coefficient k is a linear function of the point distance from the nearest airfoil point 𝑑𝑚𝑖𝑛, 

such that the grid points forming the airfoil boundary are fully displaced and the grid points 

further than a distance limit 𝑑𝑙𝑖𝑚 stay at their reference configuration position: 

 𝑘 = max(1 − 𝑑𝑚𝑖𝑛 𝑑𝑙𝑖𝑚⁄ , 0) (14) 

2.2 Spatial Discretization of Euler Equations 

The Finite Volume Method (FVM) is used for the discretization of Euler equations in ALE 

formulation. Let us divide the computational domain Ω into a set of N non-overlapping 

subsets (cells) Ω𝑖 such that 

 

Ω = ⋃ Ω𝑖

𝑁

𝑖=1

, Ω𝑖 ∩ Ω𝑗 = ∅, ∀𝑖 ≠ 𝑗 (15) 



 45 

The integral conservation law Eq. 2 has to be satisfied in each finite volume cell Ω𝑖. We 

consider the integral boundary flux of the polygonial cell as a sum of fluxes through its walls, 

where Γ𝑖𝑗 stands for the edge between the cell i and a neighbouring cell j and the average flux 

along the edge is denoted by 𝑭𝑖𝑗: 

 
∮ 𝑭(𝑾, 𝒏, 𝒔)𝑑Γ

Γ𝑖

= ∑ 𝑭𝑖𝑗 ||Γ𝑖𝑗||

𝑗∈𝑁𝑖

 (16) 

The numerical approximation 𝑭̃𝑖𝑗 of the flux 𝑭𝑖𝑗 was obtained by the AUSM-family scheme 

in the first (AUSM
+
, [28]) and second modification (AUSM

+
-up, [26]) by Liou. The idea of 

the AUSM schemes is to split the flux into the convective and pressure part and to treat them 

separately: 

 𝑭̃𝟏 𝟐⁄ = 𝑭̃𝟏 𝟐⁄
𝒄 + 𝑭̃𝟏 𝟐⁄

𝒑
, (17) 

where the 1/2 subscript indicates evaluation at cell interface. 

The definition of the convective and pressure terms for M-split AUSM+ scheme in ALE 

formulation can be found in [29]: 

 

𝑭̃𝟏 𝟐⁄
𝒄 = 𝑀1 2⁄

𝑟 𝑎𝐿 𝑅⁄ [

𝜌
𝜌𝒖

𝜌𝑒𝑡 + 𝑝
]

𝐿 𝑅⁄

, 𝑭̃𝟏 𝟐⁄
𝒑

= [
0

𝑝𝒏
𝑝𝒔 ⋅ 𝒏

]

1 2⁄

 (18) 

where a is the speed of sound and the L/R subscript indicates that the expression is evaluated in 

either one or the other of the interface-adjacent cells, based on the upwinding principle. The 

notable differences of the ALE formulation in comparison to the Eulerian reference frame 

arise in the use of the relative Mach number 𝑀𝑟 = (𝑢 − 𝑠) ⋅  𝒏/𝑎 instead of an absolute one 

and in the appearance of the new 𝑝𝑠 ⋅ 𝑛 term in the pressure part of flux. Formulas for the 

evaluation of the interface quantities 𝑀1 2⁄
𝑟 , 𝑝1/2 are introduced in [25]. 

The need for a universally applicable and robust numerical scheme lead to an extension of the 

AUSM scheme to low-speed flows with the introduction of the AUSM
+
-up modification in 

[26]. The newly constructed scheme is applicable to all speed regimes and removes the 

deficiency of the previous versions, which suffers from pressure oscillations along the grid 

direction with a very small velocity component, such as in the direction normal to the 

boundary layer. The formulation of the convective flux uses mass-flow splitting instead of 

Mach number splitting, here given already in the ALE formulation using the flow velocity 

relative to the interface to evaluate the mass-flow 𝑚𝑟: 

 

𝑭̃𝟏 𝟐⁄
𝒄 = 𝑚̇1 2⁄

𝑟 [
1
𝒖

𝑒𝑡 + 𝑝 𝜌⁄
]

𝐿 𝑅⁄

 (19) 

The extra term 𝑝𝑠 ⋅ 𝑛 appears again in the pressure flux due to the ALE configuration. The 

reader is referred to Liou’s paper [26] for the evaluation of the interface quantities. The 

coefficients of the scheme were set as in the example given by Liou to 𝐾𝑢 = 0.75, 𝐾𝑝 = 0.25 

and 𝜎 = 1.0. 

In order to increase the accuracy of the scheme, the quantities at the left and right side of the 

interface are obtained by using a linear reconstruction with TVD-based limiting of slopes 

[30]. In particular the min-mod limiter was employed in order to enhance the scheme stability. 
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2.3 Time Integration and GCL 

We substitute the numerical approximation of cell fluxes (Eq.16) into the set of Euler 

equations (Eq. 2) and by denoting the space-averaged state vector as 𝑾 we obtain the 

following semidiscrete form: 

 𝑑

𝑑𝑡
(𝑾Ω)𝑖 + 𝑹𝑖 = 0, 𝑹𝑖 = ∑ 𝑭𝑖𝑗||Γ𝑖𝑗||,

𝑗∈𝑁𝑖

 (20) 

where R is the residual vector. 

We use the explicit Euler scheme and the second-order accurate 4-stage Runge-Kutta scheme 

(RK4) to integrate the system in time. While both schemes are a routinely used technique for 

numerical integration, a special attention has to be paid to meeting the GCL condition for 

ALE formulation. The Euler scheme is defined as: 

 
𝑾𝑛+1 =

1

Ω𝑛+1
[𝑾𝑛Ω𝑛 − Δ𝑡𝑹(𝒙𝑛+1 2⁄ , 𝒔𝑛+1 2⁄ , 𝑾𝑛)] (21) 

The GCL requires that the residual vector is evaluated on a mid-point grid in between the two 

time steps n and n + 1 [27]: 

 

𝒙𝑛+1 2⁄ =
𝒙𝑛 + 𝒙𝑛+1

2
, 𝒔𝑛+1 2⁄ =

𝒙𝑛+1 − 𝒙𝑛

Δ𝑡
 (22) 

To obtain the mid-point grid, we first need to determine the position of the grid in the next 

time-step, denoted as 𝒙𝑛+1. We transform the set of the two second-order ordinary differential 

equations (ODEs) describing the airfoil motion (Eq. 9 or 10) into a set of four first order 

ODEs: 

 𝒒̇ = 𝑓(𝒒), 𝒒 = [ℎ, ℎ̇, 𝜙, 𝜙̇] (23) 

We integrate the equation numerically in time and obtain a new airfoil position: 

 𝒒𝑛+1 = 𝒒𝑛 + Δ𝑡𝑓(𝒒𝑛) (24) 

Now we can employ the technique described in Section 3.1 to update the whole mesh with the 

new airfoil position. 

The RK4 scheme is expressed as: 

 𝑾(0) = 𝑾𝑛 , 

𝑾(𝑘) =
1

Ω(𝑘)
[𝑾𝑛Ω𝑛 − 𝛼𝑘Δ𝑡𝑹 (𝒙

(𝑘−
1
2

)
, 𝒔

(𝑘−
1
2

)
, 𝑾(𝑘−1))], 

𝑘 = 1, … ,4, 

𝑾𝑛+1 = 𝑾(4), 

(25) 

with the coefficients set to 𝛼1 = 1/4, 𝛼2 = 1/3, 𝛼3 = 1/2 and 𝛼4 = 1. 

Again a mid-point grid is used to uphold the GCL, analogically to the Euler scheme: 

 

𝒙(𝑘−1 2⁄ ) =
𝒙𝑛 + 𝒙(𝑘)

2
, 𝒔(𝑘−1 2⁄ ) =

𝒙(𝑘) − 𝒙𝑛

𝛼𝑘Δ𝑡
 (26) 
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The RK4 scheme for the temporal integration of the first order ODEs describing the airfoil 

motion (Eq. 23) is defined as 

 𝒒(𝑘) = 𝒒𝑛 + 𝛼𝑘Δ𝑡𝑓(𝒒(𝑘−1)) (27) 

 
Fig. 4: Distribution of non-dimensional pressure near airfoil LE from AUSM+ (left) and 

AUSM+-up scheme (right) for 𝑢1,𝐹𝑆 = 30 𝑚/𝑠. 

3 Results and Discussion 

3.1 Steady-State Solution 

Steady state computations were performed to validate the numerical flow model by 

comparison with experimental data. The airfoil is fixed in position with h = 0 m and 𝜙 = 0° 

and the flow is iteratively computed by the time-marching method until it converges to a time-

constant solution. The airfoil chord length is c = 0:3 m and the inlet boundary conditions are 

defined by the free-stream flow quantities 𝜌𝐹𝑆 = 1.225
𝑘𝑔

𝑚3 , 𝑢𝐹𝑆 =  [30,0]𝑇 𝑚

𝑠
, 𝑝𝐹𝑆 =

101325 𝑃𝑎 

Figure 4 shows the distribution of static pressure near the airfoil leading edge, normalized by 

the free-stream static pressure 𝑝𝐹𝑆. The solutions obtained by the AUSM
+
 and AUSM+-up 

schemes are compared. As noted by Liou [26], the original AUSM
+
 scheme suffers from 

oscillations appearing along the grid direction with small velocity component, which are here 

observed in the direction normal to the airfoil surface. The pressure oscillations influence 

directly the airfoil pressure distribution and lead to an inaccurate computation of the airfoil 

aerodynamic load, yielding the AUSM
+
 scheme unusable for the present model. The modified 

AUSM
+
-up performs satisfactorily, as it produces a smoother static pressure distribution 

virtually free of spurious oscillations. The rate of convergence is demonstrated in Fig. 5 by 

means of density residuals. While the AUSM
+
 scheme stops converging after 70 000 

iterations, the AUSM
+
-up scheme shows a steady convergence with residuals still diminishing 

after having dropped by 6 orders of magnitude. Note that the second order reconstruction is 

not employed in either of the cases, as it caused the AUSM
+
 scheme to diverge. All other 

computations performed in this paper employ the AUSM
+
-up scheme with reconstruction. 

The comparison of computations performed on two grids with different level of refinement is 

shown in Fig. 6. The isolines of pressure 𝑐𝑝 are plotted, employing the definition 

 
𝑐𝑝 =

𝑝 − 𝑝𝐹𝑆

1
2 𝜌𝐹𝑆𝑢𝑟𝑒𝑓

2
, 

(28) 
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where the reference velocity 𝑢𝑟𝑒𝑓 =  √𝑢1,𝐹𝑆
2 +  𝑢2,𝐹𝑆

2 . 

The discrepancy in the pressure field captured on the two grids with 256x24 and 516x49 cells 

is negligible, indicating that even the coarser grid is sufficiently refined. 

This conclusion is further supported by the airfoil surface static pressure and velocity 

distribution, presented as a function of airfoil chord in Fig. 7. The pressure coefficient in 

Fig. 7 (a) shows close agreement between the results on the two grids and the only notable 

discrepancy occurs in terms of the pressure minimum at 10%𝐶𝑎𝑥 which is by 2.4% more 

pronounced on the fine grid. 

 
Fig. 5: Comparison of density residuals for AUSM+ and AUSM+-up schemes for 𝑢1,𝐹𝑆 =

30 𝑚/𝑠 

 
Fig. 6: Isolines of nondimensional pressure 𝑝/𝑝𝐹𝑆 on a coarse and fine grid 

Validation is provided by the experimental data of Benetka [31] which agree remarkably 

closely with CFD everywhere apart from the pressure minimum between 10% and 30% of 

𝐶𝑎𝑥. This underprediction of the pressure drop is not exclusive to the numerical model 

employed in this work and it is reported also in works of other authors using both inviscid 

[24] and viscous [7] flow solvers. A close match within 1.3% between numerical and 

experimental results [32] is found in terms of the non-dimensional squared velocity 𝑄2 =
(𝑢1

2 + 𝑢2
2)/𝑢𝑟𝑒𝑓

2 , plotted in the Fig. 7 (b). 
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(a) Pressure coefficient   (b) Non-dimensional velocity squared 

Fig. 7: Distribution of airfoil pressure coefficient cp and non-dimensional velocity squared 

Q
2
 on a coarse and fine grid, compared with experimental data of Luchta [32] and 

Benetka [31] 

3.2 Prescribed Oscillation of Airfoil 

This chapter presents the unsteady flow solution for a vibrating airfoil with prescribed 

harmonic oscillations around elastic axis. The vertical position of the elastic axis is fixed to 

h = 0 m and the rotation angle 𝜙 is defined as 

 𝜙 = 𝜙𝑚𝑎𝑔(2𝜋𝑓𝑡), (29) 

with the pitching magnitude 𝜙𝑚𝑎𝑔= 3 and frequency f = 30 Hz. 

The airfoil chord length is c = 0:1322 m and the position of elastic axis is 𝜉𝐸𝐴= 0:25c (Fig. 2). 

The inlet boundary conditions are defined by the free-stream flow quantities 𝜌𝐹𝑆 = 1:225 

kg/m
3
, 𝑢𝐹𝑆 = [136; 0]

T 
m/s, 𝑝𝐹𝑆pFS = 101325 Pa. 

The unsteady evolution of pressure coefficient 𝑐𝑝 is for each point on the airfoil surface 

approximated as 

 𝑐𝑝(𝑡) ≈ 𝑐𝑝
𝑚𝑒𝑎𝑛 + 𝑐𝑝

𝑚𝑎𝑔
⋅ 𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝑐𝑝

𝜙
), (30) 

where f is the prescribed frequency of airfoil vibration, 𝑐𝑝
𝑚𝑒𝑎𝑛 is the time-averaged value of 

𝑐𝑝, and the magnitude of oscillations 𝑐𝑝
𝑚𝑎𝑔

 and the phase-shift 𝑐𝑝
𝜙

 are obtained by the least-

squares method. 

The latter three quantities are plotted in Fig. 8 together with experimental results of Benetka 

[33] and Triebstein [34]. 

The time-averaged pressure coefficient shown in Fig. 8 (a) matches well with experimental 

data, although the minimum at 15% 𝐶𝑎𝑥 is less pronounced. Similar discrepancy between 

numerical and experimental data was already discussed for the steady solution in Section 4.1. 

The magnitude of cp oscillations plotted in Fig. 8 (b) is scaled to the pitching magnitude of 1 

radian, i.e. multiplied by 180/𝜋/𝜙𝑚𝑎𝑔. The numerical predictions capture the trend of 𝑐𝑝
𝑚𝑎𝑔

 in 

agreement with the experimental results, although its magnitude is under predicted by up to 

50% in the first half of Cax. 
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(a) Mean value    (b) Magnitude 

 
(c) Phase shift 

Fig. 8: Mean value, magnitude and phase shift of cp during forced rotation. Comparison of 

CFD with experiments of Benetka [33] and Triebstein [34] 

Both experimental and numerical data show that the phase-shift of cp is negative near the 

airfoil leading edge and increases towards the airfoil trailing edge. However, while both sets 

measurements indicate that the phase-shift reaches positive values in the aft part of chord, the 

numerical prediction remains negative along the full chord length. The discrepancies can be 

explained by the lack of viscous flow modelling and by the difference in the size of the 

experimental test section and of the computational domain. While the experimental channel 

extends only 2.3 chord lengths up and down from the airfoil in vertical direction, the 

corresponding dimension of the computational domain is 10 chord lengths. 

3.3 Airfoil Motion with Two Degrees of Freedom 

The flow induced vibrations of an airfoil with two degrees of freedom are described in this 

chapter. We consider an airfoil section extruded by l = 0.05 m, with a weight m = 0.086622 

kg, a static moment to elastic axis 𝑆𝜙 = -0.000779673 kg m, a moment of inertia to elastic 

axis 𝐼𝜙= 0.000487291 kg m
2
, a chord length c = 0.3 m, a stiffness of support 𝑘ℎℎ= 105.109 

N/m in vertical displacement and 𝑘𝜙𝜙= 3.695582 Nm/rad in rotation and the respective 

damping 𝑏ℎℎ = 𝜖𝑘ℎℎ, 𝑏𝜙𝜙= 𝜖𝑘𝜙𝜙, with 𝜖 = 10
-3

. The positions of the elastic axis and center of 

gravity are 𝜉𝐸𝐴= 0.4c and 𝜉𝐶𝐺 = 0.37c respectively, measured from the airfoil LE (Fig. 2). The 

remaining inlet conditions are defined by the free-stream quantities 𝑝𝐹𝑆= 101325 Pa and 

𝜌𝐹𝑆= 1.225 kg/m
3
. The horizontal component of the freestream velocity 𝑢1,𝐹𝑆 is varied, while 
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the vertical component 𝑢2,𝐹𝑆= 0 m/s. The initial condition is obtained by running a 

computation with the airfoil in a fixed position until the solution converges to a steady-state. 

The airfoil motion is described either by the non-linear (Eq. 9) or by the linearized (Eq. 10) 

equations of motion. Figure 9 compares the solutions obtained using these two definitions of 

airfoil movement for a freestream velocity 𝑢1,𝐹𝑆= 43 m/s and an initial airfoil displacement 

h0 = 0:05 m and pitching angle 𝜙0= 6°. The temporal evolutions of the vertical displacement 

and pitching angle are plotted in Figs. 9 (a) and 9 (b) respectively. The linearization of the 

equations was performed under the assumption that the magnitude of the pitching angle 𝜙 is 

small and the evolutions of both quantities show that the solution is consistent with the 

original non-linear equations for 𝜙 < 13°. However, as the equations are solved numerically 

in either case, it is possible to use the non-linear equations without any computational penalty. 

The integration in time is performed using either the explicit Euler or the RK4 scheme (Eqs. 

24 and 27). The figures show only the results of the latter one, as the solution obtained by the 

Euler scheme matches so closely that it would not be discernible within the figure resolution. 

This results from the small time step of the order 10
-7

 s, necessary for the stability of the 

explicit temporal integration schemes. 

 
(a) Displacement   (b) Rotation angle 

Fig. 9: Vertical displacement and rotation angle of flow-induced airfoil vibrations with 

𝑢1,𝐹𝑆 = 43 m/s using linearized and non-linear equations of airfoil motion 

The dynamic behaviour of the system for different free-stream velocities ranging from 

𝑢𝐹𝑆 = 30 m/s to 𝑢𝐹𝑆 = 45 m/s is plotted in Fig. 10 by means of the airfoil displacement h (a) 

and pitching angle 𝜙 (b). The initial airfoil position is h0 = 0.05 and 𝜙0= 6° in all cases, the 

airfoil motion is described by the non-linear equations and the integration in time is 

performed by the RK4 method. The two cases with low freestream velocities, 30 and 35 m/s, 

exhibit a stable behaviour with both the airfoil vertical displacement h and the pitching angle 

𝜙 converging to zero values. An increase of freestream velocity to 40 m/s results into an 

unstable behavior with both parameters diverging, although the airfoil oscillations are damped 

and flutter does not occur. This is in agreement with the results from NASTRAN cited in 

Honzátko’s work [24], predicting a torsional divergence to occur at 𝑢𝐹𝑆= 37.7 m/s and flutter 

at 𝑢𝐹𝑆= 42.4 m/s. According to this prediction, the last two plotted cases with freestream 

velocities of 43 and 45 m/s should be above the flutter boundary. The plots show that the 

damping of oscillations becomes substantially weaker with increasing freestream velocity, 

however, due to the presence of the torsional divergence it is not possible to safely conclude 

whether flutter actually occurs. 
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(a) Displacement   (b) Rotation angle 

Fig. 10: Vertical displacement and rotation angle of flow-induced airfoil vibrations for 

varying 𝑢1,𝐹𝑆 

Conclusions 

This paper presents results of a fluid-structure interaction model applied to the solution of 

flow-induced vibrations of a NACA 0012 airfoil on elastic support with two degrees of 

freedom. The inviscid flow model is based on the Euler equations and solved numerically by 

the FVM in ALE formulation. The strong two-way coupling between structure and fluid is 

realized via the aerodynamic loads transmitted to the structure and via the fluid-domain 

deformation due to the airfoil movement. The model was successfully validated by 

experimental data on a steady-state solution and on a test-case with forced harmonic 

vibrations of the airfoil. The results showed that using the AUSM
+
 scheme for low-speed flow 

regimes leads to a presence of spurious pressure oscillations which are removed by the 

modified AUSM
+
-up scheme. The predictions of the fluid-structure interaction model were in 

agreement with the results of other authors, showing a stable behaviour of the system for low 

incoming flow velocities and a torsional divergence together with a weaker damping of 

oscillations for higher flow velocities. 
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Nomenclature 

a speed of sound 

ALE Arbitrary Lagrangian-Eulerian 

𝑏𝜙𝜙 damping in rotation 

𝑏ℎℎ damping in vertical displacement 

c airfoil chord length 

𝐶𝑎𝑥 axial chord coordinate 

𝑐𝑝 pressure coefficient 
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CFD Computational Fluid Dynamics 

CG center of gravity 

CSM Computational Structural Mechanics 

d distance 

e internal energy 

𝑒𝑡 total energy 

EA elastic axis 

F flux vector 

f frequency of airfoil oscillations 

𝐹𝑦 lifting force 

FEM Finite Elements Method 

FVM Finite Volumes Method 

GCL Geometric Conservation Law 

h vertical displacement of airfoil 

𝐼𝜙 airfoil moment of inertia to EA 

𝑘𝜙𝜙 stiffness in rotation 

𝑘ℎℎ stiffness in vertical displacement 

l airfoil depth 

LE airfoil leading edge 

m mass of airfoil 

𝑚̇ mass-flow 

M pitching moment 

n normal 

NLH Non-Linear Harmonics 

p static pressure 

Q non-dimensionalized velocity 

R vector of residuals 

s ALE velocity 

𝑆𝜙 airfoil static moment to EA 

t time 

u velocity 

W vector of characteristic variables 

Greek symbols 

𝛾 Poisson constant 

Ω computational domain 

Γ domain boundary 

ρ density 

ξ coordinate along airfoil chord from LE 

Sub- and Superscripts 

0 initial 

½ evaluated on the interface 

FS free-stream 

I inlet 

L/R evaluated in one of the interface-adjacent cells 
mag

 magnitude 
mean

 time-averaged 

o outlet 
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r 
relative 

ref reference 

w wall 

 
𝜙

 phase-shift 
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NUMERICKÁ SIMULACE AEROELASTICKÝCH ÚČINKŮ PRO PROFIL KŘÍDLA S DRUHÝM 

STUPNĚM VOLNOSTI 

Zvyšování výkonu parních turbín vede k návrhu nízkotlakých stupňů o velkém průměru, 

vyznačujících se dlouhými a tenkými lopatkami. Interakce pevných těles s prouděním může 

způsobit vibrace, které mají za následek sníženou životnost stroje kvůli únavě materiálu. Tato 

práce představuje matematický model interakce pevného tělesa s tekutinou, navržený za 

účelem zkoumání vibrací způsobených prouděním. Model je zde aplikován na zjednodušený 

testovací případ osamoceného profilu leteckého křídla. Model proudění je založen na 

Eulerových rovnicích v Arbitrary Lagrange-Euler formulaci, diskretizovaných metodou 

konečných objemů. Jeho validace je provedena prostřednictvím srovnání s experimentálními 

daty a s numerickými výsledky jiných autorů. 

NUMERISCHE SIMULATION AEROELASTISCHER WIRKUNGEN FÜR DAS PROFIL 

DER TRAGFLÄCHE MIT DEM ZWEITEN FREIHEITSGRAD 

Die Erhöhung der Leistung von Dampfturbinen führt zum Entwurf von Niedrigdruckgraden 

mit einem großen Durchschnitt. Diese Grade zeichnen sich durch lange und dünne Schaufeln 

aus. Die Interaktion der Festkörper mit der Strömung kann Vibrationen erzeugen, welche eine 

kürzere Lebensdauer der Maschine auf Grund von Materialermüdung zur Folge haben. Diese 

Arbeit stellt ein mathematisches Modell der Interaktion des festen Körpers mit Flüssigkeit 

vor, welches zum Zweck der Erforschung von durch Strömung verursachten Vibrationen 

entworfen worden ist. Das Strömungsmodell basiert auf den Eulergleichungen in der 

Arbitrary Lagrange-Euler-Formulierung, welche durch die Methode der endlichen Inhalte 

diskretisiert werden. Die Validierung des Strömungsmodells wird mittels Vergleich mit den 

experimentellen Daten und mit den numerischen Ergebnissen anderer Autoren durchgeführt. 

NUMERYCZNA SYMULACJA AEROELASTYCZNEGO ODDZIAŁYWANIA NA PROFIL 

SKRZYDŁA Z DRUGIM STOPNIEM SWOBODY 

Zwiększanie mocy turbin parowych skutkuje projektowaniem stopni niskociśnieniowych 

o dużej średnicy, charakteryzujących się długimi i cienkimi łopatkami. Interakcja ciał stałych 

ze strumieniem powietrza (wiatrem) może wywołać drgania, które wpływają na skrócenie 

okresu wytrzymałości maszyny z powodu zmęczenia materiału. Niniejsze opracowanie 

przedstawia matematyczny model interakcji ciała stałego z płynem, opracowany w celu 

badania drgań spowodowanych przepływem powietrza. Model można zastosować do 

uproszczonego testowania samodzielnego profilu skrzydła samolotu. Model przepływu 

powietrza bazuje na równaniach Eulera w procedurze Arbritrary Lagrange-Euler (ALE), 

zdyskretyzowanych metodą objętości skończonych. Jego walidację przeprowadzono w drodze 

porównania z danymi doświadczalnymi i numerycznymi wynikami innych autorów. 


