Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu

Abstract
Interakce proudění a pružného tělesa v lidském vokálním traktu je komplexní a složitý problém. V této práci je proudění popsáno nestlačitelnými Navier-Stokesovýmirovnicemi. Diskretizace je provedena metodou konečných objemů v programu OpenFOAM. Dále je nastíněn princip časové a prostorové diskretizace, stejně jako použité okrajové podmínky a metody pro řešení lineárních algebraických rovnic. Model hlasivek je matematicky popsán diferenciálními rovnicemi a jejich řešení je implementováno v programu Matlab Simulink, který zde slouží pro ověření schopnosti řešiče pimpleDyMFoam pracovat s tělesem se dvěma stupni volnosti. Programový kód řešiče je popsán a okomentován.Numerické simulace jsou provedeny ve 2D a 3D. Ve 2D jsou zkoumány možnosti deformace sítě, jsou zkoumány možnosti a analýza vlivu počtu elementů sítě na výsledný pohyb tělesa a je nalezena hranice stability systému kritická rychlost proudění, kdy těleso kmitá s neklesající amplitudou. Ve 3D je simulován případ se stejnými počátečními podmínkami jako pro dvě dimenze. Tyto případy jsou zde porovnány.
Fluid-structure interaction in the human vocal tract is a complex and complicated problem. in this master thesis flow is described by incompressible Navier-Stokes equations. Discretization is accomplished by finite volume method in program OpenFOAM. Furthermore, the principle of time and space discretization is given as well as the boundary conditions and methods for the solution of the linear algebraic equation.Model of the human vocal tract is mathematically described by differential equations and the solution is implemented in Matlab Simulink to verify the ability of pimpleDyMFoam to work with the body with two degrees of freedom. The program code of the solver is described and commented.Numerical simulations are relized in 2D and 3D. The possibilities of deformation of the mesh are investigated as well as the influence of a number of elements to the body movement and the stability boundary of the aeroelastic system critical flow velocity, where the body starts to oscillate with increasing amplitudes is found in 2D. A 3D case is computed and compared to the 2D case with identical boundary and initial conditions.
Description
Subject(s)
Výpočetní mechanika tekutin (CFD), interakce proudění a pružných těles, aero-elastická nestabilita, OpenFoam, Computation Fluid Dynamics (CFD), fluid-structure interaction, aeroelastic in-stability, OpenFOAM
Citation
ISSN
ISBN