Comparative statistical analysis of selected control charts for highly capable processes

dc.contributor.authorJarošová, Eva
dc.contributor.authorNoskievičová, Darja
dc.contributor.otherEkonomická fakultacs
dc.date.accessioned2019-06-15T15:50:59Z
dc.date.available2019-06-15T15:50:59Z
dc.description.abstractWhen a high-quality process is to be controlled by 100% inspection and yes-no decision is employed, several types of charts come into account, e.g. CCC, CCC-r or geometric CUSUM (CCC-CUSUM). The aim of the paper is to examine performance of these charts so that a suitable one can be chosen for a given process. The charts are compared according to the quickness with which the upward shift in the fraction of nonconforming items is detected. The average number of observations to signal (ANOS) instead of the usual average run length (ARL) is determined. While ANOS for CCC or CCC-r charts can be easily calculated based on a geometric or a negative binomial distribution, its computation is quite difficult in the case of CCC-CUSUM chart. The corrected diffusion (CD) approximation was used to determine ANOS and the results were verified by Monte Carlo simulation. Zero-state and steady-state (both fixed-shift and random-shift model) analyses were performed to take different scenarios of the process shift occurrence into account. CCC-3 or CCC-2 and CCC-CUSUM charts were compared. The order r for CCC-r chart was chosen as an optimal value for the given process based on the semi-economic model suggested in Brodecká (2013). Our study revealed that for in-control p0 equal to 0.0002 the CCC-CUSUM chart performs best especially for shifts around the pre-specified out-of-control fraction nonconforming. The CCC-r chart may be comparable or even better in detecting larger shifts. The results of the comparative study were utilized for the choice of the most suitable and best performing control chart to control the high-yield process producing ERG (Exhaust Gas Recirculation) sensors. Comparisons of CCC-r and CCC-CUSUM charts can be found elsewhere in literature, but conclusions seem to be rather inconsistent. To our best knowledge no study dealing with such small in-control fraction nonconforming together with the low risk of false alarm has been published yet. The choice of CUSUM's parameters and consequent values of ANOS can help practitioners who need to control high-quality processes.en
dc.formattext
dc.identifier.doi10.15240/tul/001/2019-2-005
dc.identifier.eissn2336-5604
dc.identifier.issn1212-3609
dc.identifier.urihttps://dspace.tul.cz/handle/15240/152596
dc.language.isoen
dc.publisherTechnická Univerzita v Libercics
dc.publisherTechnical university of Liberec, Czech Republicen
dc.publisher.abbreviationTUL
dc.relation.isbasedonBourke, P. D. (1991). Detecting a Shift in Fraction Nonconforming using Run-Length Control Charts with 100% Inspection. Journal of Quality Technology, 23(13), 225-238. https://doi.org/10.1080/00224065.1991.11979328.
dc.relation.isbasedonBourke, P. D. (2001). The Geometric CUSUM chart with Sampling Inspection for Monitoring Fraction Defective. Journal of Applied Statistics, 28(8), 951-972. https://doi.org/10.1080/02664760120076643.
dc.relation.isbasedonBourke, P. D. (2006). The RL2 Chart versus the np Chart for Detecting Upward Shifts in Fraction Defective. Journal of Applied Statistics, 33(1), 1-15. https://doi.org/10.1080/02664760500389400.
dc.relation.isbasedonBourke, P. D. (2008). Performance Comparisons for the Synthetic Control Chart for Detecting Increases in Fraction Nonconforming. Journal of Quality Technology, 40(4), 461-475. https://doi.org/10.1080/00224065.2008.11917749.
dc.relation.isbasedonBrodecká, K. (2013). Application of Selected Statistical Methods at Conditions of High Yield Processes (in Czech). Doctoral Thesis, VŠB-TU Ostrava, Ostrava.
dc.relation.isbasedonBrook, D., & Evans, D. A. (1972). An Approach to the Probability Distribution of Cusum Run Length. Biometrika, 59(3), 539-549. https://doi.org/10.1093/biomet/59.3.539.
dc.relation.isbasedonCalvin, T. (1983). Quality Control Techniques for Zero Defects. IEEE Transactions on Components Hybrids and Manufacturing Technology, 6(3), 323-328. https://doi.org/10.1109/TCHMT.1983.1136174.
dc.relation.isbasedonChan, L. Y., Xie, M., & Goh, T. N. (2000). Cumulative Quantity Control Charts for Monitoring Production Processes. International Journal of Production Research, 38(2), 399-408. https://doi.org/10.1080/002075400189482.
dc.relation.isbasedonChang, T. C., & Gan, F. F. (2001). Cumulative Sum Charts for High Yield Processes. Statistica Sinica, 11(3), 791-805.
dc.relation.isbasedonChang, T. C., & Gan, F. F. (2007). Modified Shewhart Charts for High Yield Processes. Journal of Applied Statistics, 34(7), 857-877. https://doi.org/10.1080/02664760701546279.
dc.relation.isbasedonChen, P. W., & Cheng, C. S. (2010). An ARL-Unbiased Approach to Setting Control Limits of CCC-r Chart for High Yield Processes. Journal of Quality, 17(6), 435-451. https://doi.org/10.6220/joq.
dc.relation.isbasedonDi Bucchianico, A., Mooiweer, G. D., & Moonen, E. J. G. (2005). Monitoring Infrequent Failures of High-volume Production Processes. Quality and Reliability Engineering International, 21(5), 521-528. https://doi.org/10.1002/qre.738.
dc.relation.isbasedonGoh, T. N. (1987). A Control Chart for Very High Yield Processes. Quality Assurance, 13(1), 18-22.
dc.relation.isbasedonHawkins, D. M., & Olwell, D. H. (1998). Cumulative Sum Charts and Charting for Quality Improvement. New York: Springer.
dc.relation.isbasedonKaminsky, F. C., Benneyan, J. C., Davis, R. D., & Burke, R. J. (1992). Statistical Control Charts Based on a Geometric Distribution. Journal of Quality Technology, 24(2), 63-69. https://doi.org/10.1080/00224065.1992.12015229.
dc.relation.isbasedonMontgomery, D. C. (2009). Statistical Quality Control: A Modern Introduction. Hoboken: J. Wiley  Sons.
dc.relation.isbasedonOhta, H., Kusukawa, E., & Rahim, A. (2001). A CCC-r Chart for High-Yield Processes. Quality and Reliability Engineering International, 17(6), 439-446. https://doi.org/10.1002/qre.428.
dc.relation.isbasedonPage, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41(1), 100-114. https://doi.org/10.1093/biomet/41.1-2.100.
dc.relation.isbasedonReynolds, M. R., & Stoumbos, Z. G. (1999). A CUSUM Chart for Monitoring a Proportion When Inspecting Continuously. Journal of Quality Technology, 31(1), 87-108. https://doi.org/10.1080/00224065.1999.11979900.
dc.relation.isbasedonSchwertman, N. C. (2005). Designing Accurate Control Charts Based on the Geometric and Negative Binomial Distribution. Quality and Reliability Engineering International, 21(8), 743-756. https://doi.org/10.1002/qre.683.
dc.relation.isbasedonSzarka, J. L. III, & Woodall, W. H. (2011). A Review and Perspective on Surveillance of Bernoulli Processes. Quality and Reliability Engineering International, 27(6), 735-752. https://doi.org/10.1002/qre.1256.
dc.relation.isbasedonSzarka, J. L. III, & Woodall, W. H. (2012). On the Equivalence of the Bernoulli and Geometric CUSUM Charts. Journal of Quality Technology, 44(1), 54-62. https://doi.org/10.1080/00224065.2012.11917881.
dc.relation.isbasedonWu, Z., & Spedding, T. A. (1999). Evaluation of ATS for CRL Control Chart. Process Control and Quality, 11(3), 183-191. https://doi.org/10.1163/156856699750248540.
dc.relation.isbasedonWu, Z., Yeo, S. H., & Fan, H. (2000). A Comparative Study of the CRL–Type Control Charts. Quality and Reliability Engineering International, 16(4), 269-279. https://doi.org/10.1002/1099-1638(200007/08)16:4<269
dc.relation.isbasedonWu, Z., Zhang, X., & Yeo, S. H. (2001). Design of the Sum–of–Conforming–Run–Length Control Charts. European Journal of Operational Research, 132(1), 187-196. https://doi.org/10.1016/S0377-2217(00)00131-4.
dc.relation.isbasedonWu, Z., Luo, H., & Zhang, X. L. (2006). Optimal np Control Chart with Curtailment. European Journal of Operational Research, 174(3), 1723-1741. https://doi.org/10.1016/j.ejor.2005.03.038.
dc.relation.isbasedonXie, W., Xie, M., & Goh, T. N. (1995). A Shewhart-like Charting Technique for High Yield Processes. Quality and Reliability Engineering International, 11(3), 189-196. https://doi.org/10.1002/qre.4680110309.
dc.relation.isbasedonXie, M., & Goh, T. N. (1997). The Use of Probability Limits for Process Control Based on Geometric Distribution. International Journal of Quality and Reliability Management, 14(1), 64-73. https://doi.org/10.1108/02656719710156789.
dc.relation.isbasedonXie, M., Lu, X. S., Goh, T. N., & Chan, L. Y. (1999). A Quality Monitoring and Decision-making Scheme for Automated Production Processes. International Journal of Quality and Reliability Management, 16(2), 148-157. https://doi.org/10.1108/02656719910218238.
dc.relation.isbasedonXie, M., Goh, T. N., & Kuralmani, C. (2002). Statistical Models and Control Charts for High Quality Processes. Norwel, Massachusetts: Kluwer Academic Publishers.
dc.relation.isbasedonYeh, A. B., McGrath, R. N., Sembower, M. A., & Shen, Q. (2008). EWMA Control Charts for Monitoring High-yield Processes Based on Non-transformed Observations. International Journal of Production Research, 46(20), 5679-5699. https://doi.org/10.1080/00207540601182252.
dc.relation.isbasedonZhang, L., Govindaraju, K., Bebbington, M., & Lai, C. D. (2004). On the Statistical Design of Geometric Control Charts. Quality Technology and Quantitative Management, 1(2), 233-243. https://doi.org/10.1080/16843703.2004.11673075
dc.relation.ispartofEkonomie a Managementcs
dc.relation.ispartofEconomics and Managementen
dc.relation.isrefereedtrue
dc.rightsCC BY-NC
dc.subjectCCC charten
dc.subjectCCC-r charten
dc.subjectCCC-CUSUM charten
dc.subjectANOSen
dc.subjectzero-state scenarioen
dc.subjectfixed shift steady-state scenarioen
dc.subjectrandom shift steady-state scenarioen
dc.subjectsimulationen
dc.subject.classificationC46
dc.subject.classificationL62
dc.titleComparative statistical analysis of selected control charts for highly capable processesen
dc.typeArticleen
local.accessopen
local.citation.epage82
local.citation.spage68
local.facultyFaculty of Economics
local.filenameEM_2_2019_05
local.fulltextyes
local.relation.abbreviationE+Mcs
local.relation.abbreviationE&Men
local.relation.issue2
local.relation.volume22
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EM_2_2019_05.pdf
Size:
1.54 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections