USE OF CHITOSAN AS ANTIMICROBIAL, ANTIVIRAL AND ANTIPOLLUTION AGENT IN TEXTILE FINISHING

dc.contributor.authorELAMRI, ADEL
dc.contributor.authorZDIRI, KHMAIS
dc.contributor.authorBOUZIR, DHOUHA
dc.contributor.authorHAMDAOUI, MOHAMED
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2022-11-15T07:44:59Z
dc.date.available2022-11-15T07:44:59Z
dc.description.abstractWith the industrial developments in recent times, the textile industry also needs sustainable and environmental-friendly resources. Today’s world has been overburdened with the use of synthetic or hazardous materials in day-to-day life. Chitosan polymer obtained from chitin deacetylation, having a lot of properties beneficial to mankind without being hazardous to environment and humans is currently gaining popularity for research and development all over the globe. Antimicrobial and antiviral textile finishing with the help of chitosan is a new trend in the textile field. Also, chitosan having good adsorption properties finds its application in textile effluent treatments. This review reports and discusses multifunctional finishing and dyeing of textiles with chitosan and highlights its application for textile wastewater treatment.cs
dc.formattext
dc.format.extent20 stran
dc.identifier.doi10.15240/tul/008/2022-3-006
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/166230
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonKarim N., Afroj S., Lloyd K., et al.: Sustainable Personal Protective Clothing for Healthcare Applications: A Review, ACS Nano, 14 (10), 2020, pp. 12313–12340. https://doi.org/10.1021/acsnano.0c05537
dc.relation.isbasedonYasin S., Curti M., Behary N., et al.: Process optimization of eco- friendly flame retardant finish for cotton fabric: a response surface methodology approach, Surface Reviews and Letters, 24, 2017, pp. 175. https://doi.org/10.1142/S0218625X17501141
dc.relation.isbasedonGzyra-Jagieła K., Peczek B., Wiśniewska-Wrona M., et al.: Physicochemical properties of chitosan and its degradation products. In: Van den Broek L.A., Boeriu C.G. (eds): Chitin and Chitosan: Properties and Applications, New York: John Wiley and Sons, 2019, pp. 61–80. https://doi.org/10.1002/9781119450467.ch3
dc.relation.isbasedonDe Oliveira A.L.B., Thâlysson F., Cavalcante T., et al. Chitosan Nanoparticle: Alternative for Sustainable Agriculture. In: Nascimento, R.F.d., Neto, V.d.O.S., Fechine, P.B.A., Freire, P.d.T.C. (eds): Nanomaterials and Nanotechnology. Materials Horizons: From Nature to Nanomaterials, Singapore: Springer, 2021.
dc.relation.isbasedonGortari M.C., Hours R.A.: Biotechnological processes for chitin recovery out of crustacean waste: a mini-review, Electr. J. Biotechnol.,16(3), 2014, pp. 1-18. https://doi.org/10.2225/vol16-issue3-fulltext-10
dc.relation.isbasedonKim Y., Park R.D.: Progress in bioextraction processes of chitin from crustacean biowastes, J. Korean Soc. Appl. Biol. Chem. 58, 2015, pp. 545–554. https://doi.org/10.1007/s13765-015-0080-4
dc.relation.isbasedonMahmoud M.G., El Kady E.M., Asker M.S.: Chitin, chitosan and glucan, properties and applications, World J. Agri. & Soil. Sci. 3(1), 2019, pp. 1–19. https://doi.org/10.33552/WJASS.2019.03.000553
dc.relation.isbasedonTungtong S., Okonogi S., Chowwanapoonpohn S., et al.: Solubility, viscosity and rheological properties of watersoluble chitosan derivatives, Maejo International Journal of Science and Technology, 6(2), 2012, pp. 315-322. https://doi.org/10.14456/mijst.2012.23
dc.relation.isbasedonDetsi A., Kavetsou E., Kostopoulou I., et al.: Nanosystems for the encapsulation of natural products: the case of chitosan biopolymer as a matrix, Pharmaceutics, 12(7), 2020, pp. 669. https://doi.org/10.3390/pharmaceutics12070669
dc.relation.isbasedonZaja C.A., Hanuza J., Wanda M., Dymińska L.: Determination of N-acetylation degree in chitosan using Raman spectroscopy, Spectrochim. Acta Part A Mol. Biomol. Spectr. 134, 2015, pp. 114–120. https://doi.org/10.1016/j.saa.2014.06.071
dc.relation.isbasedonDimzon I.K., Knepper T.P.: Degree of deacetylation of chitosan by infrared spectroscopy and partial least Squares, Int. J. Biol. Macromol., 72, 2015, pp. 939–945. https://doi.org/10.1016/j.ijbiomac.2014.09.050
dc.relation.isbasedonZou P., Yang X., Wang J., et al. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides, Food Chem., 190, 2016, pp. 1174–1181. https://doi.org/10.1016/j.foodchem.2015.06.076
dc.relation.isbasedonStrnad S., Sauperl O., Fras-Zemljic L.: Cellulose fibres funcionalised by chitosan: Characterization and application, In: Biopolymers, London: IntechOpen, 2010.
dc.relation.isbasedonLyalina T., Zubareva A., Lopatin S., et al.: Correlation analysis of chitosan physicochemical parameters determined by different methods, Organic & Medicinal Chemistry International Journal, 1(3), 2017, pp. 74–82. https://doi.org/10.19080/OMCIJ.2017.01.555562
dc.relation.isbasedonChawla S.P., Kanatt S.R., Sharma A.K.: Chitosan. In: Ramawat K. and Mérillon J.M. (eds): Polysaccharides, Cham: Springer, 2015.
dc.relation.isbasedonPérez-Álvarez L., Leire Ruiz-Rubio L.,Vilas-Vilela J.L.: Determining the deacetylation degree of chitosan: opportunities to learn instrumental techniques, Journal of Chemistry Education, 95, 2018, pp. 1022–1028. https://doi.org/10.1021/acs.jchemed.7b00902
dc.relation.isbasedonCosta C.N., Teixeira V.G., Delpech M.C., et al.: Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride, Carbohydrate Polymers 133, 2015, pp. 245–250. https://doi.org/10.1016/j.carbpol.2015.06.094
dc.relation.isbasedonKasaai M.R.: A review of several reported procedures to determine the degree of N acetylation for chitin and chitosan using infrared spectroscopy, Carbohydrate Polymers, 71, 2008, pp. 497–508. https://doi.org/10.1016/j.carbpol.2007.07.009
dc.relation.isbasedonSandeep A., Sangameshwar K., Mukesh G., et al.: A brief overview on chitosan applications, Indo American Journal of Pharmaceutical Research, 3(12), 2013, pp.1564–4574. https://doi.org/10.1044/1980-iajpr.01231
dc.relation.isbasedonBansal V., Sharma P.K., Sharma N., et al.: Applications of chitosan and chitosan derivatives in drug delivery, Advances in Biological Research, 5(1), 2011, pp. 28–37.
dc.relation.isbasedonDos Santos Z.M., Caroni A.L.P.F., Pereira M.R., et al.: Determination of deacetylation degree of chitosan: A comparison between conductometric titration and CHN elemental analysis, Carbohydrate Polymers, 344, 2009, pp. 2591–2595. https://doi.org/10.1016/j.carres.2009.08.030
dc.relation.isbasedonDi Nardo T., Hadad C., Nguyen Van Nhien A., Moores A.: Synthesis of high molecular weight chitosan from chitin by mechanochemistry and aging, Green Chemistry, 21(12), 2019, pp. 3276–3285. https://doi.org/10.1039/C9GC00304E
dc.relation.isbasedonIeolovich M.: Crystallinity and hydrophility of chitin and chitosan, Research Reviews: Journal of Chemistry, 3(3), 2014, pp. 7–14.
dc.relation.isbasedonIslam A., Islam M.S., Zakaria M.U.M.A., et al.: Extraction and worth evaluation of chitosan from shrimp and prawn coproducts, American Journal of Food Technology, 15, 2020, pp. 43–48. https://doi.org/10.3923/ajft.2020.43.48
dc.relation.isbasedonHossain M.S., Iqbal A., Preparation and characterization of chitosan from shrimp waste, Journal of Bangladesh Agriculture University, 12, 2014, pp. 153–160. http://dx.doi.org/10.3329/jbau.v12i1.21405
dc.relation.isbasedonThakur V.K., Thakur M.K.: Recent advances in graft copolymerization and applications of chitosan: A review, ACS Sustainable Chemistry Engineering, 2, 2014, pp. 2637–2652. https://doi.org/10.1021/sc500634p
dc.relation.isbasedonHosseinnejad M., Jafari S.M.: Evaluation of different factors affecting antimicrobial properties of chitosan, Int. J. Biol. Macromol. 85, 2016, pp. 467–475. https://doi.org/10.1016/j.ijbiomac.2016.01.022
dc.relation.isbasedonSarkar S., Das D., Dutta P., et al.: Chitosan: a promising therapeutic agent and effective drug delivery system in managing diabetes mellitus, Carbohydr. Polym., 247, 2020, p. 116594. https://doi.org/10.1016/j.carbpol.2020.116594
dc.relation.isbasedonKaczmarek M.B., Struszczyk-Swita K., Li X. et al.: Enzymatic modifications of chitin, chitosan, and chitooligosaccharides, Front. Bioeng. Biotechnol., 7, 2019, p. 243. https://doi.org/10.3389/fbioe.2019.00243
dc.relation.isbasedonCoquery C., Negrell C., Caussé N., et al.: Synthesis of new high molecular weight phosphorylated chitosans for improving corrosion protection, Pure Appl. Chem., 91, 2019, pp. 509– 521. https://doi.org/10.1515/pac-2018-0509
dc.relation.isbasedonAranaz I., Alcántara A.R., Civera M.C., et al.: Chitosan: an overview of its properties and applications.Polymers 13, 2021, pp. 3256–3282. https://doi.org/10.3390/polym13193256
dc.relation.isbasedonOrelma H., Filpponen I., Johansson L.S., et al.: Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules, Biomacromolecules, 12(12), 2011, pp. 4311–4318. https://doi.org/10.1021/bm201236a
dc.relation.isbasedonEssawy H.A., Ghazy M.B.M., El-Hai F.,Mohamed M.F.: Novel chitosan-cellulose backbone for grafting polymerization of acrylic acid and application in controlled release, Journal of Chemistry and Chemical Sciences, 5(12), 2015, pp. 698–712.
dc.relation.isbasedonGrande R., Trovatti E., Carvalho A.J.F., Gandini A.: Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan, Journal of Materials Chemistry A, 5, 2017, pp. 13098–13103. https://doi.org/10.1039/C7TA02467C
dc.relation.isbasedonJocic D., Vı´lchez S., Topalovic T., et al.: Chitosan/acid dye interactions in wool dyeing system, Carbohydrate Polymers 60, 2015, pp. 51–59. https://doi.org/10.1016/j.carbpol.2004.11.021
dc.relation.isbasedonZargarkazemi A., Sadeghi-Kiakhani M., Arami M., Bahrami S.H.: Modification of wool fabric using prepared chitosancyanuric chloride hybrid, Journal of the Textile Institute, 106, 2015, pp. 80–89. https://doi.org/10.1080/00405000.2014.906097
dc.relation.isbasedonSilva I.O., Ladchumananandasivam R., Nascimento J., et al.: Multifunctional chitosan/gold nanoparticles coatings for biomedical textiles. Nanomaterials 9(8), 2019, p. 1064. https://doi.org/10.3390/nano9081064
dc.relation.isbasedonShin H.K., Park M., Chung Y.S., et al.: Preparation and characterization of chlorinated cross-linked chitosan/cotton knit for biomedical applications, Journal of Macromolecular Research, 21, 2013, pp. 1241–1246. https://doi.org/10.1007/s13233-013-1164-9
dc.relation.isbasedonLiu Y., Kim H.I.: Characterization and antibacterial properties of genipin-crosslinked chitosan/poly (ethylene glycol)/ZnO/Ag nanocomposites, Carbohydrate Polymers, 89, 2012, pp. 111– 116. https://doi.org/10.1016/j.carbpol.2012.02.058
dc.relation.isbasedonYan T., Cheng F., Wei X., et al. : Biodegradable collagen sponge reinforced with chitosan/calcium pyrophosphate nanoflowers for rapid hemostasis, Carbohydrate Polymers 170, 2017, pp. 271–280. https://doi.org/10.1016/j.carbpol.2017.04.080
dc.relation.isbasedonChen Z., Yao X., Liu L., et al. Blood coagulation evaluation of N-alkylated chitosan. Carbohydrate Polymers, 173, 2017, 259–268. https://doi.org/10.1016/j.carbpol.2017.05.085
dc.relation.isbasedonGuo X., Sun T., Zhong R., et al. Effects of Chitosan Oligosaccharides on Human Blood Components, Frontiers in Pharmacology, 9, 2018, 1412. https://doi.org/10.3389/fphar.2018.01412
dc.relation.isbasedonPogorielov V.M., Sikora V.Z.: Chitosan as a Hemostatic Agent: Current State, European Journal of Medicine Series B 2, 2015, pp. 24–33
dc.relation.isbasedonAi H., Wang F., Xia Y., et al.: Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly Musca domestica L, Food Chem. 132, 2012, pp. 493–498. https://doi.org/10.1016/j.foodchem.2011.11.033
dc.relation.isbasedonDavis R., Zivanovic S., Michael Davidson P, et al.: Enteric viral surrogate reduction by chitosan, Food Environ, Virol., 7, 2015, pp. 359–365. https://doi.org/10.1007/s12560-015-9208-2
dc.relation.isbasedonGao Y., Liu W., Wang W., et al.: The inhibitory effects and mechanisms of 3,6-O-sulfated chitosan against human papillomavirus infection, Carbohydr. Polym., 198, 2018, pp. 329–338. https://doi.org/10.1016/j.carbpol.2018.06.096
dc.relation.isbasedonLi X., Wu P., Gao G.F., et al.: Carbohydrate-functionalized chitosan fiber for influenza virus capture, Biomacromolecules 12, 2011, pp. 3962–3969. https://doi.org/10.1021/bm200970x
dc.relation.isbasedonGuo Y., Dong Y., Xu C., et al.: Novel combined biological antiviral agents Cytosinpeptidemycin and Chitosan oligosaccharide induced host resistance and changed movement protein subcellular localization of tobacco mosaic virus, Pestic Biochem. Physiol., 164, 2020, pp. 40–46. https://doi.org/10.1016/j.pestbp.2019.12.006
dc.relation.isbasedonDavydova V.N., Nagorskaia V.P., Gorbach V.I., et al.: Chitosan antiviral activity: dependence on structure and depolymerization method, Prikl. Biokhim. Mikrobiol., 47, 2011, pp.113–118. https://doi.org/10.1134/S0003683811010042
dc.relation.isbasedonTan R.S.L., Hassandarvish P., Chee C.F., et al.: Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine, Carbohydrate Polymers, 290, 2022, 119500. https://doi.org/10.1016/j.carbpol.2022.119500
dc.relation.isbasedonShi G.N., Zhang C.N., Xu R., et al.: Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysateloaded chitosan nanoparticles vaccine, Biomaterials 113, 2017, pp.191-202. https://doi.org/10.1016/j.biomaterials.2016.10.047
dc.relation.isbasedonMuthu M., Gopal J., Chun S., et al.: Crustacean waste-derived chitosan: antioxidant properties and future perspective, Antioxidants, 10(2), 2021, pp. 228. https://doi.org/10.3390/antiox10020228
dc.relation.isbasedonNegm N.A., Kana M.T.H.A., Abubshait S.A., Betiha M. A.: Effectuality of chitosan biopolymer and its derivatives during antioxidant applications, Int. J. Biol. Macromol., 164, 2020, pp. 1342–1369. https://doi.org/10.1016/j.ijbiomac.2020.07.197
dc.relation.isbasedonWei L., Tan W., Wang G., et al.: The antioxidant and antifungal activity of chitosan derivatives bearing schiff bases and quaternary ammonium salts. Carbohydr. Polym., 226, 2019, 115256. https://doi.org/10.1016/j.carbpol.2019.115256
dc.relation.isbasedonXia Y., Wang D., Liu D., et al.: Applications of chitosan and its derivatives in skin and soft tissue diseases, Front. Bioeng. Biotechnol., 10, 2022, 894667. https://doi.org/10.3389/fbioe.2022.894667
dc.relation.isbasedonGallo J., Raska M., Kriegova E., Goodman S. B.: Inflammation and its resolution and the musculoskeletal system, Journal of Orthopedic Translation, 10, 2017, pp. 52–67. https://doi.org/10.1016/j.jot.2017.05.007
dc.relation.isbasedonPark B.K., Kim M.M.: Applications of chitin and its derivatives in biological medicine. Int J Mol Sci., 11(12), 2010, pp. 5152- 5164. https://doi.org/10.3390/ijms11125152
dc.relation.isbasedonKim M.S., Sung M.J., Seo S.B., et al.: Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid β peptide and interleukin-1β, Neuroscience Letters, 321(1-2), 2002, pp.105- 109. https://doi.org/10.1016/s0304-3940(02)00066-6
dc.relation.isbasedonDavydova V.N., Kalitnik A.A., Markov P.A., et al.: Cytokineinducing and anti-inflammatory activity of chitosan and its lowmolecular derivative, Appl Biochem Microbiol, 52, 2016, pp. 476–482. https://doi.org/10.1134/S0003683816050070
dc.relation.isbasedonKim S.: Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and antiinflammatory activities, International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/1708172
dc.relation.isbasedonYounes I., Rinaudo M.: Chitin and chitosan preparation from marine sources. Structure, properties and applications, Marine Drugs, 13(3), 2015, pp. 1133–1174. https://doi.org/10.3390/md13031133
dc.relation.isbasedonKim S., Nakamatsu J., Maurtua D., Oliveira F.: Formation, antimicrobial activity, and controlled release from cotton fibers with deposited functional polymers, Journal of Applied Polymer Science, 133, 2016, pp. 4305401–4305411. https://doi.org/10.1002/app.43054
dc.relation.isbasedonMalinowska-Pańczyk E., Staroszczyk H., Gottfried K., et al.: Antimicrobial properties of chitosan solutions, chitosan films and gelatin chitosan films, Polimery Warsaw, 61(11/12), 2015, pp. 735–741. https://doi.org/10.14314/polimery.2015.735
dc.relation.isbasedonKim S., Fernandes M.M., Matamá T., et al.: Chitosan– lignosulfonates sono-chemically prepared nanoparticles: characterization and potential applications, Colloids and Surfaces B: Biointerfaces, 103, 2013, pp. 1–8. https://doi.org/10.1016/j.colsurfb.2012.10.033
dc.relation.isbasedonTardajos M.G., Cama G., Dash M., et al., Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications, Carbohydrate Polymers, 191, 2018, pp. 127– 135. https://doi.org/10.1016/j.carbpol.2018.02.060
dc.relation.isbasedonJiménez-Gómez C.P., Cecilia J.A.: Chitosan: a natural biopolymer with a wide and varied range of applications, Molecules 25(17), 2020, pp. 3981. https://doi.org/10.3390/molecules25173981
dc.relation.isbasedonIbrahim A., Laquerre J., Forcier P., et al.: Antimicrobial Agents for Textiles: Types, Mechanisms and Analysis Standards. In: Textiles for Functional Applications, London: IntechOpen, 2021.
dc.relation.isbasedonVaresano A., Vineis C., Aluigi A., et al.: Antimicrobial polymers for textile products, Sci. Against Microb. Pathog. Commun Curr. Res. Technol. Adv., 2011, pp. 99–110.
dc.relation.isbasedonSantos Morais D., Guedes R.M., Lopes M.A.: Antimicrobial approaches for textiles: From research to market, Materials 9, 2016, pp. 498. https://doi.org/10.3390/ma9060498
dc.relation.isbasedonPeriolatto M., Vineis C., Ferrero F., et al.: Multifunctional finishing of wool fabrics by chitosan UV-grafting: An approach, Carbohydrate Polymers, 98, 2013, pp. 624–629. https://doi.org/10.1016/j.carbpol.2013.06.054
dc.relation.isbasedonFerrero F., Periolatto M., Ferrario S.: Sustainable antimicrobial finishing of cotton fabrics by chitosan UVgrafting: From laboratory experiments to semi industrial scaleup, Journal of Cleaner Production, 96, 2015; pp. 244–252. https://doi.org/10.1016/j.jclepro.2013.12.044
dc.relation.isbasedonPeriolatto M., Ferrero F., Vineis C., et al.: Novel antimicrobial agents and processes for textile applications. In: Kumavath R.N. (eds): Antibacterial agents, London: IntechOpen, 2017.
dc.relation.isbasedonErdoğan S.: Textile finishing with chitosan and silver nanoparticles against Escherichia coli ATCC 8739, Trakaya Univ. J. Nat. Sci., 21(1), 2020, pp. 21–32. https://doi.org/10.23902/trkjnat.641367
dc.relation.isbasedonPetkova P., Francesko A., Fernandes M.M., et al.: Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles, ACS Applied Materials Interfaces, 6(2), 2014, pp. 1164–1172. https://doi.org/10.1021/am404852d
dc.relation.isbasedonPeriolatto M., Ferrero F., Vineis C.: Antimicrobial chitosan finish of cotton and silk fabrics by UV-curing with 2- hydroxy2-methylphenylpropane-1-one, Carbohydrate Polymers, 88 (1), 2012, pp. 201–205. https://doi.org/10.1016/j.carbpol.2011.11.093
dc.relation.isbasedonMehravani B., Ribeiro A.I., Montazer M., Zille, A.: Development of antimicrobial polyester fabric by a green in situ synthesis of copper nanoparticles mediated from chitosan and ascorbic acid, Materials Science Forum, 1063, 2022, pp. 83–90. https://doi.org/10.4028/p-xa1m7m
dc.relation.isbasedonTawfik T.M., El-Masry A.M.A.: Preparation of chitosan nanoparticles and its utilization as novel powerful enhancer for both dyeing properties and antimicrobial activity of cotton fabrics, Biointerface Res. Appl. Chem., 11, 2021, pp.13652– 13666. https://doi.org/10.33263/briac115.1365213666
dc.relation.isbasedonZemljič L.F., Volmajer J., Ristić T., et al.: Antimicrobial and antioxidant functionalization of viscose fabric using chitosan– curcumin formulations, Textile Research Journal, 84(8), 2014, pp. 819–830. https://doi.org/10.1177/0040517513512396
dc.relation.isbasedonAli N.F., Abd- Elsalam I.S.: Antimicrobial characteristics of wool fibers treated with chitosan-propolis nano composite and dyed with natural dye extracted from Red Prickly Pear, International Journal of Agricultural Technology, 16, 2020, pp. 223- 236.
dc.relation.isbasedonSaleh S.N., Khaffaga M.M., Ali N.M., et al.: Antibacterial functionalization of cotton and cotton/polyester fabrics applying hybrid coating of copper/chitosan nanocomposites loaded polymer blends via gamma irradiation, Int. J. Bio. Macromol., 183, 2021, pp. 23–34. https://doi.org/10.1016/j.ijbiomac.2021.04.059
dc.relation.isbasedonChattopadhyay D.P., Inamdar M.S.: Handbook of Sustainable Polymers: Processing and Application, Chapter 19, Chitosan and Nano Chitosan: Properties and Application to Textiles, pp. 659–741, Florida: Pan Stanford Publishing, 2015.
dc.relation.isbasedonBoroumand H., Badie F., Mazaheri S.: Chitosan-based nanoparticles against viral infections, Front. Cell. Infect. Microbiol. 11, 2021, 643953. https://doi.org/10.3389/fcimb.2021.643953
dc.relation.isbasedonBar G., Biswas D., Pati S., et al.: Antiviral finishing on textiles: An Overview, Textile & Leather Review, 4(1), 2021, pp. 5–22. https://doi.org/10.31881/TLR.2020.17
dc.relation.isbasedonZhang Y., Fan W., Sun Y., et al.: Application of antiviral materials in textiles: A review, Nanotechnology Reviews, 10(1), 2021, pp. 1092–1115. https://doi.org/10.1515/ntrev-2021-0072
dc.relation.isbasedonCalais G.B., Bataglioli R.A., Santiago T.S.A., et al.: Hybrid biopolymer – metal ions formulations for virucidal textile coatings. In: Proceeding of XI Latin American Congress of Artificial Organs and Biomaterials (COLAOB), Campina Grande, 2022.
dc.relation.isbasedonXinming X.: Method for performing antibacterial and antivirus treatment on textiles by utilizing natural biomaterials, China Patent No CN105506984A, 2016.
dc.relation.isbasedonZhang S., Dong H., He R., et al.: Hydro electroactive Cu/Zn coated cotton fiber nonwovens for antibacterial and antiviral applications, Int. J. Biol. Macromol., 207, 2022, pp. 100-109. https://doi.org/10.1016/j.ijbiomac.2022.02.155
dc.relation.isbasedonZhang S., Zhang Q., Chen J., et al.: Cost-effective chitosan thermal bonded nonwovens serving as an anti-viral inhibitor layer in face mask, Materials Letters, 318, 2022, p.132203. https://doi.org/10.1016/j.matlet.2022.132203
dc.relation.isbasedonLambert-Fliszar E.: Development of an antiviral, compostable filtration material for use in surgical face masks, PhD. Thesis, Québec University, 2021.
dc.relation.isbasedonFavatela M.F., Otarola J., Ayala-Peña V.B. et al.: Development and characterization of antimicrobial textiles from chitosan-based compounds: Possible Biomaterials Against SARS-CoV-2 Viruses, J. Inorg. Organomet. Polym., 32, 2022, pp.1473–1486. https://doi.org/10.1007/s10904-021-02192-x
dc.relation.isbasedonWang W, Meng Q, Qi L, Jinbao L, et al. Chitosan derivatives and their application in biomedicine. International Journal of Molecular Sciences, 21(2), 2020, pp. 487–513. https://doi.org/10.3390/ijms21020487
dc.relation.isbasedonIslam S., Butola B.S., Roy A.: Chitosan polysaccharide as a renewable functional agent to develop antibacterial, antioxidant activity and colorful shades on wool dyed with teaextract polyphenols, International Journal of Biological Macromolecules, 120, 2018, pp. 1999–2006. https://doi.org/10.1016/j.ijbiomac.2018.09.167
dc.relation.isbasedonSingha K., Maity S., Singha M.: The saltfree dyeing on cotton: an approach to effluent free mechanism can chitosan be a potential option, International Journal of Textile Science 1, 2012, pp. 69–77. https://doi.org/10.5923/j.textile.20120106.03
dc.relation.isbasedonChoudhury A.K.R.: Coloration of cationized cellulosic fibers - a review, AATCC Journal of Research, 1, 2014, pp. 11–19. https://doi.org/10.14504/ajr.1.3.2
dc.relation.isbasedonChatha S.A.S., Hussain A.I., Ali S., et al.: Significance of chitosan to improve the substantivity of reactive dyes, Journal of Chilean Chemical Society, 61, 2016, pp. 2895‒2897. http://dx.doi.org/10.4067/S0717-97072016000200009
dc.relation.isbasedonHajji S.A., Qavamnia S., Bizhaem F.K.: Salt free neutral dyeing of cotton with anionic dyes using plasma and chitosan treatments, Industria Textila 67, 2016, pp. 109‒113.
dc.relation.isbasedonArivithamani N., Dev V.R.G.: Cationization of cotton for industrial scale salt-free reactive dyeing of garments, J. Clean Technol. Environ. Policy, 19, 2017, pp. 2317–2326. https://doi.org/10.1007/s10098-017-1425-y
dc.relation.isbasedonKunal S., Subhankar M., Mrinal S.: The salt free dyeing on cotton: an approach to effluent free mechanism; can chitosan be a potential option?, International Journal of Textile Science, 1(6), 2013, pp.69‒77. https://doi.org/10.5923/j.textile.20120106.03
dc.relation.isbasedonNallathambi A., Rengaswami V., Dev G.: Salt-free reactive dyeing of cotton hosiery fabrics by exhaust application of cationic agent, Carbohydr Polym., 15(2), 2016, pp.1‒11. https://doi.org/10.1016/j.carbpol.2016.06.087
dc.relation.isbasedonTalukder E., Majumder M., Rony S.H., et al.: Effects of salt concentration on the dyeing of various cotton fabrics with Reactive dyes, International Journal of Textile Science, 6(1), 2017, pp. 71‒74. https://doi.org/10.5923/j.textile.20170601.02
dc.relation.isbasedonAgrawal B.J.: Improved dyeing of cotton substrate with vinyl sulfone based reactive dyes: an eco-friendly approach, Prog Chem Eng., 1, 2014, pp. 22‒30.
dc.relation.isbasedonKhatri A., Peerzada M.H., Mohsin M., White M.: A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution, Journal of Cleaner Production, 87(2), 2015, pp. 5057. https://doi.org/10.1016/j.jclepro.2014.09.017
dc.relation.isbasedonFathallah A.I., Emam E.M., Ali M.A.: Eco friendly functional resist printing for viscose fabrics, International Design Journal, 10, 2020, pp.10-35. https://doi.org/10.21608/idj.2020.97615
dc.relation.isbasedonLodrick M.W., Granch B.T.: Cationization of cotton using cattle hoof and horn for salt-free reactive dyeing, The Journal of the Textile Institute, 107, 2015, pp.1375‒1380. https://doi.org/10.1080/00405000.2015.1114350
dc.relation.isbasedonAshenafi B., Berhane H., Gashawbeza H., et al.: Studies on dyeing properties of chitosan modified cellulosic fiber, Journal of Textile Engineering and Fashion Technology, 6, 2020, pp. 37‒42. https://doi.org/10.15406/jteft.2020.06.00224
dc.relation.isbasedonRehman A., Iqbal K., Azam F., et al.: To enhance the dyeability of cotton fiber with the application of reactive dyes by using chitosan, Journal of the Textile Institute, 2020. https://doi.org/10.1080/00405000.2020.1805952
dc.relation.isbasedonKarthikeyan K., Ramachandran D.T.: Iufluence of chitosan nanoparticles on reative dyeing of cotton fabrics, Proceedigns of International Conference on Systems, Science, Control, Communication, Engineering and Technology, 2015, pp. 9‒ 12.
dc.relation.isbasedonNajafzadeh N., Habibi S., Ghasri M.A.: Dyeing of polyester with reactive dyestuffs using nano-chitosan, Journal of Engineered Fibers and Fabrics, 13, 2018, pp. 46‒51. https://doi.org/10.1177/155892501801300207
dc.relation.isbasedonRana M.S., Mamun M., Biswas S., et al.: Surface modification of wool fabric with chitosan and gamma radiation, Universal Journal of Mechanical Engineering 4, 2016, pp. 130‒139. https://doi.org/10.13189/mst.2017.040101
dc.relation.isbasedonMohamed F.A., Ali N.F., El-Mohamedy R.S.R.: The dye ability and antimicrobial activity of wool fibers dyed with reactive dyes pre-treated with chitosan, Int J Curr Microbiol App Sci., 4(11), 2015, pp. 587–96.
dc.relation.isbasedonRuchira N., Tissera N.D., Silva K.M.: Coloration of cotton fibers using nano chitosan, Carbohydrate Polymers, 134, 2015, pp. 182‒189. https://doi.org/10.1016/j.carbpol.2015.07.088
dc.relation.isbasedonKarthikeyan Kaliyamoorthi K., Thangavelu R.: Union dyeing of cotton/nylon blended fabric by plasma-nano chitosan treatment, Fashion and Textiles, 2(10), 2015, pp. 1-10. https://doi.org/10.1186/s40691-015-0035-8
dc.relation.isbasedonShahidi S., Yazdani M., Hezavehi E.: Surface modification of polypropylene nonwoven fabrics by low temperature plasma followed by chitosan grafting, Biochemistry an Indian Journal 8, 2014, pp. 99‒105.
dc.relation.isbasedonAshenafi B., Berhane H., Gashawbeza H., et al.: Functionalization of Cellulosic Fibers Using Chitosan: A Salt Free Dyeing Approach, Adv Res Text Eng., 5(1), 2020, pp.1043‒1049.
dc.relation.isbasedonMostafa K.: Rendering viscose fabric dye-able with anionic dyes using plasma treatment technique and chitosan nanoparticles as an eco-friendly approach, Pigment & Resin Technology, 2021. https://doi.org/10.1108/PRT-08-2021-0103
dc.relation.isbasedonZhang W., Cheng Y.G., Zhou J.J.: Research of Salt-Free Dyeing of Reactive Dyes on Chitosan Quaternary Ammonium Salt Treated Bombyx mori Silk Fabric, Advanced Materials Research, 796, 2013, pp. 347‒352. https://doi.org/10.4028/www.scientific.net/AMR.796.347
dc.relation.isbasedonRahman Bhuiyan M.A., Shaid A., Bashar M.M., et al.: A novel approach of dyeing jute fiber with reactive dye after treating with chitosan, Open Journal of Organic Polymer Materials, 3, 2013, 87–91. https://doi.org/10.4236/ojopm.2013.34014
dc.relation.isbasedonSadeghi-Kiakhani M., Safapour S.: Improvement of dyeing and antimicrobial properties of nylon fabrics modified using chitosan-poly(propylene imine) dendreimer hybrid, Journal of Indian Engineering Chemistry, 33, 2016, pp. 170–177. https://doi.org/10.1016/j.jiec.2015.09.034
dc.relation.isbasedonHilal N.M., Gomaa S.H., Elsis A.A.: Improving dyeing parameters of polyester/ cotton blended fabrics by caustic soda, chitosan and Their hybrid, Egypt Journal of Chemistry 63, 2020, pp. 2379–2393. https://doi.org/10.21608/ejchem.2020.25571.2498
dc.relation.isbasedonLellis B., Fávaro-Polonio C.Z., Pamphile J.A., et al. Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnology Research and Innovation 3, 2019, pp. 275–290. http://dx.doi.org/10.1016/j.biori.2019.09.001
dc.relation.isbasedonHaji A.: Dyeing of cotton fabric with natural dyes improved by mordants and plasma treatment, Progress in Color, Colorants and Coatings, 12, 2019, pp. 191–201.
dc.relation.isbasedonHebeish A., Elnagar K., Shaaban M.F.: Innovative approach for effecting improved mordant dyeing of cotton textiles, Egyptian Journal of Chemistry, 58, 2015, pp. 415–430. https://doi.org/10.21608/ejchem.2015.995
dc.relation.isbasedonVerma M., Singh S.S.J., Rose N.M.: Effect of biopolymer treatments on dyeing efficiency of cotton fabric with marigold petals, J Pharmacognosy Phytochemistry, 9(2S), 2020, pp. 321–325.
dc.relation.isbasedonMansour R., Ben Ali H.: Investigating the use of chitosan: toward improving the dyeability of cotton fabrics dyed with Roselle (Hibiscus sabdariffa L.), Journal of Natural Fibers, 2019. https://doi.org/10.1080/15440478.2019.1675217
dc.relation.isbasedonZhao Z., Hurren C., Zhang M., et al.: In situ Synthesis of a double-layer chitosan coating on cotton fabric to improve the color fastness of sodium copper chlorophyllin, Materials, 13, 2020, pp. 53-65. https://doi.org/10.3390/ma13235365
dc.relation.isbasedonKe G., Zhu K., Chowdhury M.H.: Dyeing of cochineal natural dye on cotton fabrics treated with oxidant and chitosan, Journal of Natural Fibers, 2019. https://doi.org/10.1080/15440478.2019.1623742
dc.relation.isbasedonSafapour S., Sadeghi-Kiakhani M., Doustmohammadi S.: Chitosan-cyanuric chloride hybrid as an efficient novel biomordant for improvement of cochineal natural dye absorption on wool yarns, Journal of the Textile Institute, 110, 2019, pp. 81–88. https://doi.org/10.1080/00405000.2018.1503384
dc.relation.isbasedonBhuiyan M.A.R., Islam A., Islam S., et al.: Improving dyeability and antibacterial activity of Lawsonia inermis L on jute fabrics by chitosan pretreatment, Textiles and Clothing and Sustainability, 3, 2017, p. 1–10. https://doi.org/10.1186/s40689-016-0023-4
dc.relation.isbasedonQamar S.A., Ashiq M., Jahangeer M., et al.: Chitosan-based hybrid materials as adsorbents for textile dyes-a review, Case Studies in Chemical and Environmental Engineering, 2, 2020, 100021.
dc.relation.isbasedonKos L.: Use of chitosan for textile wastewater decolourization. Fibres & Textiles in Eastern Europe, 24, 201, pp. 130–135. https://doi.org/10.1016/j.cscee.2020.100021
dc.relation.isbasedonPietrelli L., Francolini I., Piozzi A.: Dyes adsorption from aqueous solutions by chitosan, Separation Science and Technology, 50, 2014, pp. 1101–1107. https://doi.org/10.1080/01496395.2014.964632
dc.relation.isbasedonDotto G.L., Pinto L.A.A.: Adsorption of food dyes onto chitosan: Optimization process and kineti, Carbohydrate Polymers, 84, 2011, pp. 231–238. https://doi.org/10.1016/j.carbpol.2010.11.028
dc.relation.isbasedonLipatova I.M., Makarova L.I., Yusova A.A.: Adsorption removal of anionic dyes from aqueous solutions by chitosan nanoparticles deposited on the fibrous carrier, Chemosphere 212, 2018, pp. 1155–1162. https://doi.org/10.1016/j.chemosphere.2018.08.158
dc.relation.isbasedonRêgo T.V., Cadaval T.R.S., Dotto G.L., et al.: Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan film, Journal of Colloid and Interface Science, 411, 2013, pp. 27–33. https://doi.org/10.1016/j.jcis.2013.08.051
dc.relation.isbasedonBoardman S.J., Lad R., Green D.C., et al.: Chitosan hydrogels for targeted dye and protein adsorption, Journal of Applied Polymer Science 134, 2017, pp. 44846–44856. https://doi.org/10.1002/app.44846
dc.relation.isbasedonOkoya A.A., Adenekan A., Ajadi F.A., et al.: Assessment of chitosan – coated Aspergillus–niger as biosorbent for dye removal and its impact on the heavy metal and physicochemical parameters of textile wastewater, African Journal of Environmental Science and Technology, 14, 2020, pp. 281–289. https://doi.org/10.5897/AJEST2020.2861
dc.relation.isbasedonIsaad J., El Achari A.: Chitosan-coated nonwoven polyethylene terephthalate material for efficient removal of cationic and anionic dyes from aqueous solution, International Journal of Environmental Analytical Chemistry, 2020. https://doi.org/10.1080/03067319.2020.1799997
dc.relation.isbasedonVithanage A.H., Madushanka A.K.D.N., Ariyadasa T., et al.: Textile Dye Removal in Wastewater Using Chitosan, Annual Sessions of IESL 2015, pp. 283–289.
dc.relation.isbasedonSamoila P., Humelnicu A.C., Ignat M., et al.: Chitin and Chitosan for Water Purification. In Chitin and Chitosan. In: Chitin and Chitosan. Hoboken: John Wiley & Sons 2019, pp. 329–360. https://doi.org/10.1002/9781119450467.ch17 140
dc.relation.isbasedonVerma S., Dutta R.K.: Adsorptive Removal of Toxic Dyes Using Chitosan and Its Composites. In: Green Materials for Wastewater Treatment, Switzeland: Springer, 2020. https://doi.org/10.1007/978-3-030-17724-9_10
dc.relation.isbasedonKyzas G.Z., Bikiaris D.N., Mitropoulos A.C.: Chitosan adsorbents for dye removal: a review, Polymer International 66, 2017, pp. 1800–1811. https://doi.org/10.1002/pi.5467
dc.relation.isbasedonAhmed S., Ikram S.: Chitosan-derivatives, Composites and Applications, Beverly: Scrivener Publishing LLC, 2017
dc.relation.isbasedonCrini G., Torri G., Lichtfouse E.: Cross-Linked ChitosanBased Hydrogels for Dye Removal. Sustainable Agriculture Reviews, 2019. https://doi.org/10.1007/978-3-030-16581-9_10
dc.relation.isbasedonZahir A., Aslam Z., Kamal M.S., et al.: Development of novel cross-linked chitosan for the removal of anionic Congo red dye, Journal of Molecular Liquids 244, 2017, pp. 211–218. https://doi.org/10.1016/j.molliq.2017.09.006
dc.relation.isbasedonLi C.G., Wang F., Peng W.G., et al.: Preparation of chitosan and epichlorohydrin cross-linked adsorbents and adsorption property of dyes, Applied Mechanics and Materials 423–426, 2013, pp. 584–587. https://doi.org/10.4028/www.scientific.net/AMM.423-426.584
dc.relation.isbasedonParize A.L., Stulzer H.K., Laranjeira M.C.M., et al.: Evaluation of chitosan microparticles containing curcumin and crosslinked with sodium tripolyphosphate produced by spray drying, Quim Nova 35, 2012, pp. 1127–1132. https://doi.org/10.1590/S0100-40422012000600011
dc.relation.isbasedonDe Luna M.S., Castaldo R., Altobelli R et al.: Chitosan hydrogels embedding hyper-crosslinked polymer particles as reusable broad-spectrum adsorbents for dye removal, Carbohydrate Polymers, 177, 2017, pp. 347–354. https://doi.org/10.1016/j.carbpol.2017.09.006
dc.relation.isbasedonFan L., Zhang Y., Luo C., et al.: Synthesis and characterization of magnetic β-cyclodextrin-chitosan nanoparticles as nano-adsorbents for removal of methyl blue, International Journal of Biological Macromolecules 50, 2012, pp. 444–450. https://doi.org/10.1016/j.ijbiomac.2011.12.016
dc.relation.isbasedonCrini, G.: Non-conventional adsorbents for dye removal. In Green chemistry for dyes removal from wastewater, Hoboken: Scrivener Publishing LLC, 2015, pp. 359–407. https://doi.org/10.1002/9781118721001.ch10
dc.relation.isbasedonJóźwiak T., Filipkowska U., Szymczyk P., et al.: Application of chitosan ionically crosslinked with sodium edetate for reactive dyes removal from aqueous solutions, Progress on Chemistry and Applications of Chitin and its Derivatives, 20, 2015, pp. 82–96. https://doi.org/10.15259/PCACD.20.08
dc.relation.isbasedonFilipkowska U., Kuczajowska-Zadrożna M., Jóźwiak T., et al.: Impact of chitosan cross-linking on RB 5 dye adsorption efficiency, Progress on Chemistry and Applications of Chitin and its Derivatives, 21, 2016, pp. 46–54. https://doi.org/10.15259/PCACD.21.04
dc.relation.isbasedonCrini G.: Green adsorbents for pollutant removal-innovative materials. In: Crini G. and Lichtfouse E. (eds): Environmental chemistry for a sustainable world, Basel: Springer, 2018.
dc.relation.isbasedonLi D.K., Li Q., Mao D.Y., et al.: A versatile biobased material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously, Bioresource Technology, 245, 2017, pp. 649–655. https://doi.org/10.1016/j.biortech.2017.09.016
dc.relation.isbasedonYang H., Sheikhi A., Van de Ven T.G.M.: Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal, Langmuir, 32, 2016, pp. 11771-11779. https://doi.org/10.1021/acs.langmuir.6b03084
dc.relation.isbasedonMandal B., Ray S.K.: Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer, Materials Science Engineering C: Materials Biological Applications, 44, 2014, pp. 132–143. https://doi.org/10.1016/j.msec.2014.08.021
dc.relation.isbasedonZhou H., Xu L.L., Wen Y.Z., et al.: Ring-like structured chitosan-metal hydrogel: mass production, formation mechanism and applications, Journal of Colloid and Interface Science, 490, 2017, pp. 233–241. https://doi.org/10.1016/j.jcis.2016.11.066
dc.relation.isbasedonDe Luna M.S., Altobelli R., Gioiella L., et al.: Role of polymer network and gelation kinetics on the mechanical properties and adsorption capacity of chitosan hydrogels for dye removal, Journal of Polymer Science Part B: Polymer Physics, 55, 2017, pp. 1843–1849. https://doi.org/10.1002/polb.24436
dc.relation.isbasedonNakhjiri M.T., Marandi G.B., Kurdtabar M.: Poly(AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: isotherms, kinetics and thermodynamic investigation, International Journal of Biological Macromolecules, 117, 2018, pp. 152–166. https://doi.org/10.1016/j.ijbiomac.2018.05.140
dc.relation.isbasedonAly R.O.: Implementation of chitosan inductively modified by gamma-rays copolymerization with acrylamide in the decontamination of aqueous basic dye solution, Arabian Journal of Chemistry, 10, 2017, pp. 21–26. https://doi.org/10.1016/j.arabjc.2012.06.017
dc.relation.isbasedonEl-Harby N.F., Ibrahim S.M.A., Mohamed N.A.: Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea crosslinked chitosan hydrogels, Water Science & Technology, 76, 2017, pp. 2719–2732. https://doi.org/10.2166/wst.2017.442
dc.relation.isbasedonZhang L., Chen L., Liu X., et al.: Effective removal of azo-dye orange II from aqueous solution by zirconium-based chitosan microcomposite adsorbent, RSC Advances 5, 2015, pp. 93840–93849. https://doi.org/10.1039/C5RA12331C
dc.relation.isbasedonLi Y., Gao H., Wang C., et al.: One-step fabrication of chitosan-Fe (OH)3 beads for efficient adsorption of anionic dyes, International Journal of Biological Macromolecules, 117, 2018, pp. 30–41. https://doi.org/10.1016/j.ijbiomac.2018.05.137
dc.relation.isbasedonJiang Y., Gong J.L., Zeng G.M., et al.: Magnetic chitosangraphene oxide composite for antimicrobial and dye removal applications, International Journal of Biological Macromolecules, 82, 2016, pp. 702–710. https://doi.org/10.1016/j.ijbiomac.2015.11.021
dc.relation.isbasedonAbul A., Samad S.A., Huq D., et al.: Textile dye removal from wastewater effluents using chitosan–ZnO nanocomposite, Journal of Textile Science and Engineering 5, 2015, pp. 1-4. https://doi.org/10.4172/2165-8064.1000200
dc.relation.isbasedonDehghani M.H., Dehghan A., Alidadi H., et al.: Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: Kinetic and equilibrium study, Korean Journal of Chemical Engineering 34, 2017, pp. 1699–1707. https://doi.org/10.1007/s11814-017-0077-2
dc.relation.isbasedonNgwabebhoh F.A., Erdem A., Yildiz U.: Synergistic removal of Cu (II) and nitrazine yellow dye using an eco-friendly chitosanmontmorillonite hydrogel: Optimization by response surface methodology, Journal of Applied Polymer Science, 133, 2016, pp. 1-4. https://doi.org/10.1002/app.43664
dc.relation.isbasedonKafil M., Nasabb S.B., Moazedb H., et al.: Efficient removal of azo dyes from water with chitosan/carbon nanoflower as a novel nanocomposite synthesized by pyrolysis technique, Desalination and Water Treatment, 142, 2019, pp. 308-320. https://doi.org/10.5004/dwt.2019.23369
dc.relation.isbasedonHahn T., Tafi E., Paul A., et al.: Current state of chitin purification and chitosan production from insects, J Chem Technol Biotechnol, 95, 2020, pp. 2775-2795. https://doi.org/10.1002/jctb.6533
dc.relation.isbasedonHuq T., Khan A., Brown D., et al.: Sources, production and commercial applications of fungal chitosan: A review, Journal of Bioresources and Bioproducts, 7(2), 2022, pp. 85-98. https://doi.org/10.1016/j.jobab.2022.01.002
dc.relation.ispartofFibres and Textiles
dc.subjectChitosancs
dc.subjectTextilecs
dc.subjectAntimicrobialcs
dc.subjectAntiviralcs
dc.subjectDyecs
dc.titleUSE OF CHITOSAN AS ANTIMICROBIAL, ANTIVIRAL AND ANTIPOLLUTION AGENT IN TEXTILE FINISHINGen
dc.typeArticleen
local.accessopen access
local.citation.epage70
local.citation.spage51
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue3
local.relation.volume29
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2022_3_6.pdf
Size:
2.15 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections