Numerical solution of the mew equation by the semi-implicit numerical scheme

dc.contributor.authorHozman, Jiří
dc.date.accessioned2017-11-02
dc.date.available2017-11-02
dc.date.issued2012
dc.description.abstractIn this paper we deal with the development of a numerical method for the solution of the mo- dified equal width wave (MEW) equation – a very important equation with a cubic nonlinearity describing a large number of physical phenomena. The crucial idea of introduced approach is based on the discretization of the MEW equation with the aid of a combination of the discontin- uous Galerkin (DG) method for the space semi-discretization and the backward Euler method for the time discretization. The appended numerical experiments investigate the conservative properties of the MEW equation related to mass, momentum and energy, and illustrate the po- tency of this scheme, consequently.en
dc.formattextcs
dc.format.extent9 stran
dc.identifier.eissn1803-9790
dc.identifier.issn1803-9782
dc.identifier.otherACC_2012_4_12
dc.identifier.urihttps://dspace.tul.cz/handle/15240/21144
dc.language.isoen
dc.licenseCC BY-NC 4.0
dc.publisherTechnická univerzita v Liberci, Česká republikacs
dc.relation.isbasedonALI, A.; HAQ, S.; ISLAM, S.: A Numerical Meshfree Technique for the Solution of the MEW Equation. Computer Modeling in Engineering and Sciences, vol. 38(1), pp. 1–23, 2008.
dc.relation.isbasedonARNOLD, D. N.; BREZZI, F.; COCKBURN, B.; MARINI, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., vol. 39(5), pp. 1749–1779, 2002.
dc.relation.isbasedonCOCKBURN, B.: Discontinuous Galerkin methods for convection dominated problems. In T. J. Barth and H. Deconinck, editors. High–Order Methods for Computational Physics,
dc.relation.isbasedonLecture Notes in Computational Science and Engineering 9, pp. 69–224. Springer, Berlin, 1999.
dc.relation.isbasedonCOCKBURN, B., KARNIADAKIS, G. E.; SHU, C.–W., editors: Discontinuous Galerkin Methods. Springer, Berlin, 2000.
dc.relation.isbasedonDOLEJŠÍ, V.; HOZMAN, J.: A priori error estimates for DGFEM applied to non- stationary nonlinear convectiondiffusion equation. In G. Kreiss et. Al. Eds., Numerical Mathematics and Advanced Applications, ENUMATH 2009, pp. 459–468, Springer, 2010.
dc.relation.isbasedonESEN, A.; KUTLUAY, S.: Solitary wave solutions of the modified equal width wave equation. Comm. Nonlinear Science and Numer. Simul., vol. 13, pp. 1538–1546, 2008.
dc.relation.isbasedonFEISTAUER, M.; FELCMAN, J.; STRASˇKRABA, I.: Mathematical and Computational Methods for Compressible Flow. Oxford University Press, Oxford, 2003.
dc.relation.isbasedonRIVIE` RE, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equa- tions: Theory and Implementation. Frontiers in Applied Mathematics. Society for Indus- trial and Applied Mathematics, Philadelphia, 2008.
dc.relation.isbasedonZAKI, S. I.: Solitary wave interactions for the modified equal width equation. Comput. Phys. Comm., vol. 126, pp. 219–231, 2000.
dc.relation.ispartofACC Journalen
dc.relation.isrefereedtrue
dc.subjectdiscontinuous galerkin methoden
dc.subjectmodified equal width wave equationen
dc.subjectsemi-implicit schemeen
dc.subjectsolitary waveen
dc.titleNumerical solution of the mew equation by the semi-implicit numerical schemeen
dc.typeArticleen
local.accessopen
local.citation.epage110
local.citation.spage102
local.fulltextyesen
local.relation.issue4
local.relation.volume18
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ACC_2012_4_12.pdf
Size:
101.54 KB
Format:
Adobe Portable Document Format
Description:
Článek