2012/4 - Natural Sciences and Technology
Permanent URI for this collection
ACC Journal, ročník XVIII 2012/4
Recenzovali:
Prof. RNDr. Jaromír Antoch, CSs. – Univerzita Karlova v Praze
doc. RNDr. Karel Najzar. CSc. - Univerzita Karlova v Praze
Recenzovali:
Prof. RNDr. Jaromír Antoch, CSs. – Univerzita Karlova v Praze
doc. RNDr. Karel Najzar. CSc. - Univerzita Karlova v Praze
Browse
Recent Submissions
- ItemMultiwavelets based on hermite cubic splines(Technická univerzita v Liberci, Česká republika, 2012-01-01) Černá, Dana; Finěk, Václav; Plačková, Gertathe convection-diffusion equation. We use an implicit scheme for the time discretization and
- ItemHP-discontinuous galerkin method for nonlinear problems(Technická univerzita v Liberci, Česká republika, 2012-01-01) Dolejší, Vítan adaptive wavelet-based method for a spatial discretization. We use a well-conditioned cubic
- ItemNumerical evaluation of rheological experiment(Technická univerzita v Liberci, Česká republika, 2012-01-01) Salač, Petr; Matoušek, IvoA viscoelastic simply supported rotationally symmetric body, fixed on a base, is considered. The body is loaded by a flat plunger, which moves in the direction of the z axis by a constant velocity v. In this work the reaction force is computed. This allows us to compare numerical results with data from rheological experiment (see [6], [7]). The variational formulation of the problem is derived and transformed to cylindrical coordinates. Some results of numerical calculations are presented.
- ItemOptimization problems under two-sided (max; min)–linear Inequalities constraints(Technická univerzita v Liberci, Česká republika, 2012-01-01) Gad, Mahmoudas well as numerical examples will be presented.
- ItemApplication of reconstruction operators in the discontinuous galerkin method(Technická univerzita v Liberci, Česká republika, 2012-01-01) Kučera, VáclavThis paper gives an overview of the main ingredients needed to incorporate reconstruction op- erators, as known from higher order finite volume (FV) and spectral volume (SV) schemes, into the discontinuous Galerkin (DG) method. Such an operator constructs higher order approxima- tions from the lower order DG scheme, increasing the order of convergence, while leading to a more efficient numerical scheme than the corresponding higher order DG scheme itself. We discuss theoretical, as well as implementational aspects and numerical experiments.