IMPROVEMENT OF FLAME RETARDANT AND ANTIBACTERIAL PROPERTIES OF COTTON-POLYESTER BLEND FABRICS

dc.contributor.authorHOROKHOV, IHOR
dc.contributor.authorKULISH, IRINA
dc.contributor.authorASAULYUK, TATYANA
dc.contributor.authorSARIBYEKOVA, YULIA
dc.contributor.authorSEMESHKO, OLGA
dc.contributor.authorMYASNYKOV, SERGEY
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2024-01-18T09:10:06Z
dc.date.available2024-01-18T09:10:06Z
dc.description.abstractThe fire retardant and antibacterial characteristics of cotton-polyester blend fabric have been improved. A composition has been developed for complex finishing of fabric using a phosphorus-containing substance on a biological basis, which, due to its high phosphorus content, can provide a fire-retardant function to textile material, as well as increase its antimicrobial properties. The thermal characteristics of treated textile materials have been studied and it has been established that the presence of phytic acid at the initial stage of destruction shifts the temperature towards lower values due to the activation of phytic acid degradation before the decomposition of the main substrate. The maximum temperature at which the final destruction of the cotton-polyester fabric occurs shifts to higher temperatures from 507°C for the untreated fabric to 565°C for the treated fabric, and the presence of dry residue increases by more than 2.5 times, which proves an increase in the heat resistance of the textile material. The length of the damaged area in the vertical combustion test was 6.5 cm, and the absence of drop formation of the polyester component was also noted, which eliminates the potential destructive effect due to the possible formation of additional fire areas. An increase in fabric antimicrobial activity is confirmed by a zone of inhibition of 2 – 4 mm around the sample using the diffusion method with gram-positive bacteria Staphylococcus pyogenes, as well as a pronounced growth inhibition of microorganisms around fabric samples examined by the method of inoculation of microflora from the environment. Treatment with the studied composition improves washing resistance and does not impair the mechanical properties of the textile material by increasing the degree of crosslinking of the polymer components used in the finishing composition.cs
dc.formattext
dc.format.extent8 stran
dc.identifier.doi10.15240/tul/008/2023-5-003
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/174546
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonKolb V. M.: Green Organic Chemistry and Its Interdisciplinary Applications (1st ed.), CRC Press, Boca Raton, FL, USA, 2016, 193 p., ISBN: 9781315371856. https://doi.org/10.1201/9781315371856
dc.relation.isbasedonKim H. J., Im S., Kim J. C., et al.: Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability, ACS Sustainable Chem. Eng. 5(8), 2017, pp. 6654-6664. https://doi.org/10.1021/acssuschemeng.7b00898
dc.relation.isbasedonMalucelli G.: Textile finishing with biomacromolecules: A low environmental impact approach in flame retardancy, In: Shahid-ul-Islam, Butola B.S. (eds) The Textile Institute Book Series, The Impact and Prospects of Green Chemistry for Textile Technology, Woodhead Publishing, 2019, pp. 251- 279, ISBN: 9780081024911. https://doi.org/10.1016/B978-0-08-102491-1.00009-5
dc.relation.isbasedonReshma A., Brindha Priyadarisini V., Amutha K.: Sustainable antimicrobial finishing of fabrics using natural bioactive agents – a review, Int. J. Life Sci. Pharma Res. 8(4), 2018, pp. 10-20. http://dx.doi.org/10.22376/ijpbs/lpr.2018.8.4.L10-20/
dc.relation.isbasedonPerepelkin K. E.: Principles and Methods of Modification of Fibres and Fibre Materials. A Review, Fibre Chemistry 37, 2005, pp. 123-140. https://doi.org/10.1007/s10692-005-0069-6/
dc.relation.isbasedonBillah S. M. R.: Textile Coatings, In: Jafar Mazumder M., Sheardown H., Al-Ahmed A. (eds) Functional Polymers, Polymers and Polymeric Composites: A Reference Series, Cham., Springer, 2019, 10, pp. 825-882. https://doi.org/10.1007/978-3-319-95987-0_30
dc.relation.isbasedonSadeghi-Kiakhani M., Safapour S.: Improvement of dyeing and antimicrobial properties of nylon fabrics modified using chitosan-poly(propylene imine) dendreimer hybrid, Journal of Industrial and Engineering Chemistry 33, 2016, pp. 170- 177. https://doi.org/10.1016/j.jiec.2015.09.034
dc.relation.isbasedonArif D., Niazi M., Ul-Haq N., et al.: Preparation of Antibacterial Cotton Fabric Using Chitosan-silver Nanoparticles, Fibers and Polymers 16, 2015, pp. 1519-1526. https://doi.org/10.1007/s12221-015-5245-6
dc.relation.isbasedonXue Z.: Microwave-assisted antimicrobial finishing of wool fabric with chitosan derivative, Indian Journal of Fibre and Textile Research 40(1), 2015, pp. 51-56.
dc.relation.isbasedonMoccelini S. K., Fernandes S. C., Vieira I. C.: Bean sprout peroxidase biosensor based on l-cysteine self-assembled monolayer for the determination of dopamine, Sensors and Actuators B: Chemical 133(2), 2008, pp. 364-369. https://doi.org/10.1016/j.snb.2008.02.039
dc.relation.isbasedonLaufer G., Kirkland C., Morgan A. B., et al.: Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton, Biomacromolecules 13(9), 2012, pp. 2843-2848. https://doi.org/10.1021/bm300873b/
dc.relation.isbasedonZhou Y., Ding C., Qian X., et al.: Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant, Carbohydrate Polymers 115, 2015, pp. 670-676. https://doi.org/10.1016/j.carbpol.2014.09.025/
dc.relation.isbasedonWang X., Romero M. Q., Zhang X. Q., et al.: Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol–gel process, RSC Adv. 5, 2015, pp. 10647-10655. https://doi.org/10.1039/C4RA14943B
dc.relation.isbasedonCostes L., Laoutid F., Dumazert L., et al.: Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid), Polymer Degradation and Stability 119, 2015, pp. 217-227. https://doi.org/10.1016/j.polymdegradstab.2015.05.014
dc.relation.isbasedonLi S., Lin X., Liu Y., et al.: Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric, Cellulose 26, 2019, pp. 4213-4223. https://doi.org/10.1007/s10570-019-02373-5
dc.relation.isbasedonChin W., Zhong G., Pu Q., et al.: A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset, Nature Communications 9(1), 2018, pp. 917. https://doi.org/10.1038/s41467-018-03325-6
dc.relation.isbasedonCao Y., Gu J., Wang S., et al.: Guanidine-Functionalized Cotton Fabrics for Achieving Permanent Antibacterial Activity Without Compromising their Physicochemical Properties and Cytocompatibility, Cellulose 27(10), 2020, pp. 6027-6036. https://doi.org/10.1007/s10570-020-03137-2
dc.relation.isbasedonOlewnik-Kruszkowska E., Gierszewska M., Jakubowska E., et al.: Antibacterial Films Based on PVA and PVA-Chitosan Modified with Poly-(Hexamethylene Guanidine), Polymers 11(12), 2019, pp. 2093. https://doi.org/10.3390/polym11122093
dc.relation.isbasedonAlongi J., Carletto R. A., Blasio A. D., et al.: DNA: a novel, green, natural flame retardant and suppressant for cotton, J. Mater. Chem. A 1, 2013, pp. 4779-4785. https://doi.org/10.1039/C3TA00107E
dc.relation.isbasedonAlongi J., Blasio A. D., Milnes J., et al.: Thermal degradation of DNA, an all-in-one natural intumescent flame retardant, Polymer Degradation and Stability 113, 2015, pp. 110-118. https://doi.org/10.1016/j.polymdegradstab.2014.11.001
dc.relation.isbasedonShang S., Yuan B., Sun Y., et al.: Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology, Journal of Colloid and Interface Science 553, 2019, pp. 364-371. https://doi.org/10.1016/j.jcis.2019.06.015
dc.relation.isbasedonPeng H., Wang D., Li M., et al.: N-P-Zn-containing 2D supermolecular networks grown on MoS2 nanosheets for mechanical and flame-retardant reinforcements of polyacrylonitrile fiber, Chemical Engineering Journal 372, 2019, pp. 873-885. https://doi.org/10.1016/j.cej.2019.04.209
dc.relation.isbasedonXu B., Wu X., Ma W., et al.: Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites, J. Anal. Appl. Pyrol. 134, 2018, pp. 231–242.
dc.relation.isbasedonSahraro M., Yeganeh H., Sorayya M.: Guanidine hydrochloride embedded polyurethanes as antimicrobial and absorptive wound dressing membranes with promising cytocompatibility, Mater. Sci. Eng. C 59, 2016, pp. 1025– 1037.
dc.relation.isbasedonLazar S. T., Kolibaba T. J., Grunlan J. C.: Flame-retardant surface treatments, Nat. Rev, Mater. 5, 2020, pp. 259–275.
dc.relation.isbasedonZhao T., Chen Q.: Halogenated phenols and polybiguanides as antimicrobial textile finishes, Antimicrobial Textiles, 2016, pp. 141-153. https://doi.org/10.1016/B978-0-08-100576-7.00009-2
dc.relation.isbasedonLi Z., Chen J., Cao W., et al.: Permanent antimicrobial cotton fabrics obtained by surface treatment with modified guanidine, Carbohydr Polym 180, 2018, pp. 192-199. https://doi.org/10.1016/j.carbpol.2017.09.080/
dc.relation.isbasedonCao Y., Gu J., Wang S., et al.: Guanidine-Functionalized Cotton Fabrics for Achieving Permanent Antibacterial Activity Without Compromising their Physicochemical Properties and Cytocompatibility, Cellulose 27(10), 2020, pp. 6027-603683.
dc.relation.isbasedonBrocato R. L., Hammerbeck C. D., Bell T. M., et al.: A lethal disease model for hantavirus pulmonary syndrome in immunosuppressed syrian hamsters infected with sin nombre virus, Journal of Virology 88(2), 2014, pp. 811– 819.
dc.relation.isbasedonJin W. J., Cheng X. W., He W. L., et al.: A bio-based flame retardant coating for improving flame retardancy and antidripping performance of polyamide 6 fabric, Polymer Degradation and Stability 203, 2022, pp. 110087. https://doi.org/10.1016/j.polymdegradstab.2022.110087
dc.relation.ispartofFibres and Textiles
dc.subjectPhytic acidcs
dc.subjectPolyhexamethylene guanidine phosphatecs
dc.subjectThermal analysiscs
dc.subjectAntimicrobial finishing compositionscs
dc.subjectFire-retardant finishing compositionscs
dc.subjectCotton-polyester fabricscs
dc.titleIMPROVEMENT OF FLAME RETARDANT AND ANTIBACTERIAL PROPERTIES OF COTTON-POLYESTER BLEND FABRICSen
dc.typeArticleen
local.accessopen access
local.citation.epage31
local.citation.spage24
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue5
local.relation.volume30
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2023_5_3.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections