IMPROVEMENT OF FLAME RETARDANT AND ANTIBACTERIAL PROPERTIES OF COTTON-POLYESTER BLEND FABRICS
dc.contributor.author | HOROKHOV, IHOR | |
dc.contributor.author | KULISH, IRINA | |
dc.contributor.author | ASAULYUK, TATYANA | |
dc.contributor.author | SARIBYEKOVA, YULIA | |
dc.contributor.author | SEMESHKO, OLGA | |
dc.contributor.author | MYASNYKOV, SERGEY | |
dc.contributor.organization | Technická univerzita v Liberci | |
dc.date.accessioned | 2024-01-18T09:10:06Z | |
dc.date.available | 2024-01-18T09:10:06Z | |
dc.description.abstract | The fire retardant and antibacterial characteristics of cotton-polyester blend fabric have been improved. A composition has been developed for complex finishing of fabric using a phosphorus-containing substance on a biological basis, which, due to its high phosphorus content, can provide a fire-retardant function to textile material, as well as increase its antimicrobial properties. The thermal characteristics of treated textile materials have been studied and it has been established that the presence of phytic acid at the initial stage of destruction shifts the temperature towards lower values due to the activation of phytic acid degradation before the decomposition of the main substrate. The maximum temperature at which the final destruction of the cotton-polyester fabric occurs shifts to higher temperatures from 507°C for the untreated fabric to 565°C for the treated fabric, and the presence of dry residue increases by more than 2.5 times, which proves an increase in the heat resistance of the textile material. The length of the damaged area in the vertical combustion test was 6.5 cm, and the absence of drop formation of the polyester component was also noted, which eliminates the potential destructive effect due to the possible formation of additional fire areas. An increase in fabric antimicrobial activity is confirmed by a zone of inhibition of 2 – 4 mm around the sample using the diffusion method with gram-positive bacteria Staphylococcus pyogenes, as well as a pronounced growth inhibition of microorganisms around fabric samples examined by the method of inoculation of microflora from the environment. Treatment with the studied composition improves washing resistance and does not impair the mechanical properties of the textile material by increasing the degree of crosslinking of the polymer components used in the finishing composition. | cs |
dc.format | text | |
dc.format.extent | 8 stran | |
dc.identifier.doi | 10.15240/tul/008/2023-5-003 | |
dc.identifier.issn | 1335-0617 | |
dc.identifier.uri | https://dspace.tul.cz/handle/15240/174546 | |
dc.language.iso | cs | cs |
dc.publisher | Technical University of Liberec | |
dc.publisher.abbreviation | TUL | |
dc.relation.isbasedon | Kolb V. M.: Green Organic Chemistry and Its Interdisciplinary Applications (1st ed.), CRC Press, Boca Raton, FL, USA, 2016, 193 p., ISBN: 9781315371856. https://doi.org/10.1201/9781315371856 | |
dc.relation.isbasedon | Kim H. J., Im S., Kim J. C., et al.: Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability, ACS Sustainable Chem. Eng. 5(8), 2017, pp. 6654-6664. https://doi.org/10.1021/acssuschemeng.7b00898 | |
dc.relation.isbasedon | Malucelli G.: Textile finishing with biomacromolecules: A low environmental impact approach in flame retardancy, In: Shahid-ul-Islam, Butola B.S. (eds) The Textile Institute Book Series, The Impact and Prospects of Green Chemistry for Textile Technology, Woodhead Publishing, 2019, pp. 251- 279, ISBN: 9780081024911. https://doi.org/10.1016/B978-0-08-102491-1.00009-5 | |
dc.relation.isbasedon | Reshma A., Brindha Priyadarisini V., Amutha K.: Sustainable antimicrobial finishing of fabrics using natural bioactive agents – a review, Int. J. Life Sci. Pharma Res. 8(4), 2018, pp. 10-20. http://dx.doi.org/10.22376/ijpbs/lpr.2018.8.4.L10-20/ | |
dc.relation.isbasedon | Perepelkin K. E.: Principles and Methods of Modification of Fibres and Fibre Materials. A Review, Fibre Chemistry 37, 2005, pp. 123-140. https://doi.org/10.1007/s10692-005-0069-6/ | |
dc.relation.isbasedon | Billah S. M. R.: Textile Coatings, In: Jafar Mazumder M., Sheardown H., Al-Ahmed A. (eds) Functional Polymers, Polymers and Polymeric Composites: A Reference Series, Cham., Springer, 2019, 10, pp. 825-882. https://doi.org/10.1007/978-3-319-95987-0_30 | |
dc.relation.isbasedon | Sadeghi-Kiakhani M., Safapour S.: Improvement of dyeing and antimicrobial properties of nylon fabrics modified using chitosan-poly(propylene imine) dendreimer hybrid, Journal of Industrial and Engineering Chemistry 33, 2016, pp. 170- 177. https://doi.org/10.1016/j.jiec.2015.09.034 | |
dc.relation.isbasedon | Arif D., Niazi M., Ul-Haq N., et al.: Preparation of Antibacterial Cotton Fabric Using Chitosan-silver Nanoparticles, Fibers and Polymers 16, 2015, pp. 1519-1526. https://doi.org/10.1007/s12221-015-5245-6 | |
dc.relation.isbasedon | Xue Z.: Microwave-assisted antimicrobial finishing of wool fabric with chitosan derivative, Indian Journal of Fibre and Textile Research 40(1), 2015, pp. 51-56. | |
dc.relation.isbasedon | Moccelini S. K., Fernandes S. C., Vieira I. C.: Bean sprout peroxidase biosensor based on l-cysteine self-assembled monolayer for the determination of dopamine, Sensors and Actuators B: Chemical 133(2), 2008, pp. 364-369. https://doi.org/10.1016/j.snb.2008.02.039 | |
dc.relation.isbasedon | Laufer G., Kirkland C., Morgan A. B., et al.: Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton, Biomacromolecules 13(9), 2012, pp. 2843-2848. https://doi.org/10.1021/bm300873b/ | |
dc.relation.isbasedon | Zhou Y., Ding C., Qian X., et al.: Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant, Carbohydrate Polymers 115, 2015, pp. 670-676. https://doi.org/10.1016/j.carbpol.2014.09.025/ | |
dc.relation.isbasedon | Wang X., Romero M. Q., Zhang X. Q., et al.: Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol–gel process, RSC Adv. 5, 2015, pp. 10647-10655. https://doi.org/10.1039/C4RA14943B | |
dc.relation.isbasedon | Costes L., Laoutid F., Dumazert L., et al.: Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid), Polymer Degradation and Stability 119, 2015, pp. 217-227. https://doi.org/10.1016/j.polymdegradstab.2015.05.014 | |
dc.relation.isbasedon | Li S., Lin X., Liu Y., et al.: Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric, Cellulose 26, 2019, pp. 4213-4223. https://doi.org/10.1007/s10570-019-02373-5 | |
dc.relation.isbasedon | Chin W., Zhong G., Pu Q., et al.: A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset, Nature Communications 9(1), 2018, pp. 917. https://doi.org/10.1038/s41467-018-03325-6 | |
dc.relation.isbasedon | Cao Y., Gu J., Wang S., et al.: Guanidine-Functionalized Cotton Fabrics for Achieving Permanent Antibacterial Activity Without Compromising their Physicochemical Properties and Cytocompatibility, Cellulose 27(10), 2020, pp. 6027-6036. https://doi.org/10.1007/s10570-020-03137-2 | |
dc.relation.isbasedon | Olewnik-Kruszkowska E., Gierszewska M., Jakubowska E., et al.: Antibacterial Films Based on PVA and PVA-Chitosan Modified with Poly-(Hexamethylene Guanidine), Polymers 11(12), 2019, pp. 2093. https://doi.org/10.3390/polym11122093 | |
dc.relation.isbasedon | Alongi J., Carletto R. A., Blasio A. D., et al.: DNA: a novel, green, natural flame retardant and suppressant for cotton, J. Mater. Chem. A 1, 2013, pp. 4779-4785. https://doi.org/10.1039/C3TA00107E | |
dc.relation.isbasedon | Alongi J., Blasio A. D., Milnes J., et al.: Thermal degradation of DNA, an all-in-one natural intumescent flame retardant, Polymer Degradation and Stability 113, 2015, pp. 110-118. https://doi.org/10.1016/j.polymdegradstab.2014.11.001 | |
dc.relation.isbasedon | Shang S., Yuan B., Sun Y., et al.: Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology, Journal of Colloid and Interface Science 553, 2019, pp. 364-371. https://doi.org/10.1016/j.jcis.2019.06.015 | |
dc.relation.isbasedon | Peng H., Wang D., Li M., et al.: N-P-Zn-containing 2D supermolecular networks grown on MoS2 nanosheets for mechanical and flame-retardant reinforcements of polyacrylonitrile fiber, Chemical Engineering Journal 372, 2019, pp. 873-885. https://doi.org/10.1016/j.cej.2019.04.209 | |
dc.relation.isbasedon | Xu B., Wu X., Ma W., et al.: Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites, J. Anal. Appl. Pyrol. 134, 2018, pp. 231–242. | |
dc.relation.isbasedon | Sahraro M., Yeganeh H., Sorayya M.: Guanidine hydrochloride embedded polyurethanes as antimicrobial and absorptive wound dressing membranes with promising cytocompatibility, Mater. Sci. Eng. C 59, 2016, pp. 1025– 1037. | |
dc.relation.isbasedon | Lazar S. T., Kolibaba T. J., Grunlan J. C.: Flame-retardant surface treatments, Nat. Rev, Mater. 5, 2020, pp. 259–275. | |
dc.relation.isbasedon | Zhao T., Chen Q.: Halogenated phenols and polybiguanides as antimicrobial textile finishes, Antimicrobial Textiles, 2016, pp. 141-153. https://doi.org/10.1016/B978-0-08-100576-7.00009-2 | |
dc.relation.isbasedon | Li Z., Chen J., Cao W., et al.: Permanent antimicrobial cotton fabrics obtained by surface treatment with modified guanidine, Carbohydr Polym 180, 2018, pp. 192-199. https://doi.org/10.1016/j.carbpol.2017.09.080/ | |
dc.relation.isbasedon | Cao Y., Gu J., Wang S., et al.: Guanidine-Functionalized Cotton Fabrics for Achieving Permanent Antibacterial Activity Without Compromising their Physicochemical Properties and Cytocompatibility, Cellulose 27(10), 2020, pp. 6027-603683. | |
dc.relation.isbasedon | Brocato R. L., Hammerbeck C. D., Bell T. M., et al.: A lethal disease model for hantavirus pulmonary syndrome in immunosuppressed syrian hamsters infected with sin nombre virus, Journal of Virology 88(2), 2014, pp. 811– 819. | |
dc.relation.isbasedon | Jin W. J., Cheng X. W., He W. L., et al.: A bio-based flame retardant coating for improving flame retardancy and antidripping performance of polyamide 6 fabric, Polymer Degradation and Stability 203, 2022, pp. 110087. https://doi.org/10.1016/j.polymdegradstab.2022.110087 | |
dc.relation.ispartof | Fibres and Textiles | |
dc.subject | Phytic acid | cs |
dc.subject | Polyhexamethylene guanidine phosphate | cs |
dc.subject | Thermal analysis | cs |
dc.subject | Antimicrobial finishing compositions | cs |
dc.subject | Fire-retardant finishing compositions | cs |
dc.subject | Cotton-polyester fabrics | cs |
dc.title | IMPROVEMENT OF FLAME RETARDANT AND ANTIBACTERIAL PROPERTIES OF COTTON-POLYESTER BLEND FABRICS | en |
dc.type | Article | en |
local.access | open access | |
local.citation.epage | 31 | |
local.citation.spage | 24 | |
local.faculty | Faculty of Textile Engineering | en |
local.fulltext | yes | en |
local.relation.issue | 5 | |
local.relation.volume | 30 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- VaT_2023_5_3.pdf
- Size:
- 1.21 MB
- Format:
- Adobe Portable Document Format
- Description:
- článek