An experimental investigation into the mechanical behavior of 3d woven hybrid composites

Title Alternative:Eksperymentalne badania mechanicznego zachowania kompozytów hybrydowych 3d
dc.contributor.authorMishra, Rajesh
dc.contributor.authorDash, B. P.
dc.contributor.authorBehera, B. K.
dc.date.accessioned2017-10-13
dc.date.available2017-10-13
dc.date.issued2013
dc.description.abstractObecně platí, že cílem hybridizace je dosáhnout kompozitní struktury, která posílí vlastnosti obou materiálů a / nebo sníží náklady, protože jeden typ vlákna může být příliš drahý. V této studii je popsána 3D tkanina sklo/aramid/epoxid hybridního kompozitu vyrobená z Kevlaru a Zylonu ve směru Z, a skla v obou směrech X a Y. Byly zkoumány mechanické vlastnosti, jako je pevnost v tahu, tlaku, tříbodý ohyb, odolnost proti nárazu, odolnost proti propíchnutí a DMA. 3D hybridní kompozity ve srovnání s kompozitem FVF jasně ukazují lepší odolnost proti nárazu, odolnost proti probodnutí a vlastnosti DMA.cs
dc.description.abstractOgólnie obowiązuje zasada, że celem hybrydyzacji jest osiągnięcie struktury kompozytowej, która poprawi właściwości obu materiałow i/lub zmniejszy koszty, ponieważ jeden typ włókna może być zbyt kosztowny. W niniejszym opracowaniu opisano tkaninę 3D szkło/aramid/epoksyd kompozytu hybrydowego wyprodukowanego z Kevlaru i Zylonu w kierunku Z oraz szkła w obu kierunkach X i Y. Badano właściwości mechaniczne takie tak wytrzymałość na rozciąganie, ciśnienie, trzypunktowe zginanie, odporność na uderzenie, odporność na przebicie i DMA. Kompozyty hybrydowe 3D w porównaniu z kompozytem FVF wykazują wyraźnie lepszą odporność na uderzenie, przebicie oraz właściwości DMA.pl
dc.description.abstractIn general, the purpose of hybridization is to achieve a composite architecture which synergizes the properties of both materials and/or lowers the cost since one of the fibers could be too expensive. In this study, 3D woven glass/aramid/epoxy hybrid composites were fabricated by using Kevlar and zylon in Z direction and glass in both X and Y direction. There mechanical behavior such as tensile, compression, 3 point bending, impact resistance, stab resistance and DMA has been investigated. 3D hybrid composites clearly shows better impact resistance, stab resistance and DMA properties as compared to neat composite of comparable FVF.en
dc.description.abstractAllgemein gilt, dass das Ziel der Hybridisierung im Erreichen einer gemischten Struktur ist, welche die Eigenschaften beider Materialien stärkt und/ oder die Kosten senkt, weil eine einzige Fasersorte zu teuer werden kann. In dieser Studie wird ein 3D-Gewebe aus Glas, Aramid und einem Epoxid eines hybriden Gemischs beschrieben. Dieses wird aus Kevlar und Zylon in Richtung Z und aus Glas in beiden Richtung X und Y hergestellt. Es wurden dessen mechanischen Eigenschaften wie Zugfestigkeit, Druck, Dreipunktebeweglichkeit, Stoßfestigkeit, Stichfestigkeit und DMA-Eigenschaften untersucht. 3D-Hybridgemische weisen im Vergleich mit dem Gemisch FVF eindeutig eine bessere Stoßfestigkeit, Stichfestigkeit und DMA-Eigenschaften auf.de
dc.formattextcs
dc.format.extent13 stran
dc.identifier.eissn1803-9790
dc.identifier.issn1803-9782
dc.identifier.otherACC_2013_1_05
dc.identifier.urihttps://dspace.tul.cz/handle/15240/21020
dc.language.isoen
dc.licenseCC BY-NC 4.0
dc.publisherTechnická univerzita v Liberci, Česká republikacs
dc.relation.isbasedonBRANDT, J. et al.: Manufacture and performance of carbon/epoxy 3D woven composites. In: Proceedings of the 37th international SAMPE symposium, Anaheim, CA, 1992.
dc.relation.isbasedonBRANDT, J; DRECHSLER, K.; ARENDTS, F. J.: Mechanical performance of composites based on various three-dimensional woven-fiber preforms. Compos Sci Technol. 1996; 56:381–6.
dc.relation.isbasedonTAN, P et al.: Compos : Part A 2000; 31:259–71.
dc.relation.isbasedonMOURITZ, A.P. et al.: Review of applications for advanced three dimensional fibre textile composites. Compos: Part A 1999; 30: 1445–61.
dc.relation.isbasedonCHOU, T. W.; KO, F. K.: Textile structural composites. Distributors for the U.S. and Canada. Amsterdam (NY, USA): Elsevier Science; 1989.
dc.relation.isbasedonMIRAVETE, A.: 3D textile reinforcements in composite materials . Cambridge (UK): Woodhead Publishing Limited; 1999.
dc.relation.isbasedonBAHEI-EL-DIN, Y. A.; ZIKRY, M. A.: Impact-induced deformation fields in 2D and 3D woven composites. Compos Sci Technol. 2003; 63:923–42.
dc.relation.isbasedonCHOU, S; CHEN, H-C.; WU, C-C.: BMI resin composites reinforced with 3D carbon- fibre fabrics. Compos Sci Technol. 1992; 43:117–28.
dc.relation.isbasedonABDULLAH, Al K. et al.: Study on the mechanical properties of jute/glass fiber- reinforced unsaturated polyester hybrid composites: effect of surface modification by ultraviolet radiation. J Reinf Plast Compos. 2006; 25(6):575–88.
dc.relation.isbasedonANUAR H et al.: Tensile and impact properties of thermoplastic natural rubber reinforced short glass fiber and empty fruit bunch hybrid composites. Polym Plast Tech. Eng. 2006; 45:1059–63.
dc.relation.isbasedonXIE, H.Q.; ZHANG, S.; XIE, D.: An efficient way to improve the mechanical properties of polypropylene/short glass fiber composites. J Appl Polym Sci. 2005; 96:1414–20.
dc.relation.isbasedonPEGORETTI, A et al.: Intraply and interply hybrid composites based on E-glass and poly (vinyl alcohol) woven fabrics: tensile and impact properties. Polym Int. 2004; 53:1290–7.
dc.relation.isbasedonHARIHARAN, A. B. A.; KHALIL, H.: Lignocellulose-based hybrid bilayer laminate composite: Part I – studies on tensile and impact behavior of oil palm fiber-glass fiber- reinforced epoxy resin. J Compos Mater. 2005; 39:663–84.
dc.relation.isbasedonHARTIKAINEN, J et al.: Mechanical properties of polypropylene composites reinforced with glass fibres and mineral filters. Plast Rubber Compos. 2004; 33:77–84.
dc.relation.isbasedonIMIELINSKA, K.; GUILLAUMAT, L.: The effect of water immersion ageing on low- velocity impact behaviour of woven aramid-glass fibre/epoxy composites. Compos Sci Technol. 2004; 64:2271–8.
dc.relation.isbasedonMAROM, G.; FISCHER, S.; TULER, F. R.; WAGNER, H. D.: Hybrid effects in composites – conditions for positive or negative effects versus rule-ofmixtures behavior. J Mater Sci. 1978; 13:1419–26.
dc.relation.isbasedonKHALID, A. A.: The effect of testing temperature and volume fraction on impact energy of composites. Mater Des. 2006; 27:499–506.
dc.relation.isbasedonBAUCOM, J.; ZIKRY, M.: Low-velocity impact damage progression in woven E-glass composite systems. Compos: Part A 2005; 36:658–64.
dc.relation.isbasedonCHOU, S.; CHEN, H. C.; CHEN, H. E.: Effect of weave structure on mechanical fracture behavior of three-dimensional carbon fiber fabric reinforced epoxy resin composites. Compos Sci Technol. 1992; 45:23–35.
dc.relation.isbasedonNAIK, N. K.; SEKHER, Y. C. et al.: Damage in woven-fabric composites subjected to low-velocity impact. Compos Sci Technol. 2000; 60:731–44.
dc.relation.isbasedonMYERS, R. H.; MONTGOMERY, D. C. (1995), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley, New York.
dc.relation.isbasedonMATUANA, L. M.; LI, Q. (2004), Statistical Modeling and Response Surface Optimization of Extruded HDPE/Wood-Flour Composite Foams, J. Thermoplast. Compos. Mater. 17(2), 185-199.
dc.relation.isbasedonMATUANA, L. M.; MENGELOGLU, F. (2002), Manufacture of rigid PVC/wood-flour composite foams using moisture contained in wood as foaming agent, J. Vinyl & Addit. Technol., 8(4), 264-270.
dc.relation.isbasedonMONTGOMERY, D. C. (2001), Design and Analysis of Experiments, 5th ed., Wiley, New York.
dc.relation.isbasedonPIGGOTT, M. R.; HARRIS, B.: Compression strength of hybrid fibre-reinforced plastics. J Mater Sci. 1981; 16:687–93.
dc.relation.isbasedonSUDARISMAN, D. I. J.: Flexural failure of unidirectional hybrid fibre-reinforced polymer (FRP) composites containing different grades of glass fibre. Adv Mater Res. 2008; 41–42:357–62.
dc.relation.isbasedonDONG, C.; RANAWEERA-JAYAWARDENA, H. A.; DAVIES, I. J.: Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres. Composites: Part B 2012; 43 573–581.
dc.relation.isbasedonTONG, L; MOURITZ, A. P.; BANNISTER, M. K.: 3D Fibre Reinforced Polymer Composites, Elsevier Science Ltd 2002; ISBN 0-08-043938-1.
dc.relation.ispartofACC Journalen
dc.relation.isrefereedtrue
dc.titleAn experimental investigation into the mechanical behavior of 3d woven hybrid compositesen
dc.title.alternativeEksperymentalne badania mechanicznego zachowania kompozytów hybrydowych 3dpl
dc.title.alternativeExperimentální výzkum mechanického chování 3d hybridních kompozitcs
dc.title.alternativeEine experimentelle Untersuchung des mechanischen Verhaltens von 3d-gewobenen Hybridgemischende
dc.typeArticleen
local.accessopen
local.citation.epage74
local.citation.spage56
local.fulltextyesen
local.relation.issue1
local.relation.volume19
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ACC_2013_1_05.pdf
Size:
904.37 KB
Format:
Adobe Portable Document Format
Description:
Článek