Targeting of Online Advertising Using Logistic Regression

dc.contributor.authorŠoltés, Erik
dc.contributor.authorTáborecká-Petrovičová, Janka
dc.contributor.authorŠipoldová, Romana
dc.contributor.otherEkonomická fakultacs
dc.date.accessioned2020-11-25T08:54:55Z
dc.date.available2020-11-25T08:54:55Z
dc.description.abstractRecently, the internet became the dominant medium in marketing and comparing the development of expenditures into advertising indicates the dominance of online advertising will be inevitably stronger. Internet advertising compared to traditional media advertising has plenty of advantages hence online marketing exhibits a huge expansion in recent era. To fully utilize the potential of online marketing, it is necessary to effectively target activities of relevant internet users with the real presumption they will purchase promoted products or services. The paper is focused on demographic targeting by the mean of logistic regression models. Explanatory variables in presented application are arising from affinities of internet webpages visited by particular users and areas of their interests that are identified from their online behaviour. Our paper provides binomial logistic mode whose role is to predict the gender of internet user and multinomial logistic model constructed for the estimation of age category the user may be assigned to. The only variables exploited in the model by the mean of stepwise regression are variables with significant influence. The impact of particular factors is quantified via odds ratios that are used for the identification of areas of interests typical for women, men and for considered age categories. The paper demonstrates how it is possible to utilise estimated logistic models for the estimation of probabilities that the internet user is from a target group – in our case, women aged 25–44 years old. Prediction quality of models is assessed by the set of classification measures arising from confusion matrix that is generally acceptable in machine learning. Presented analyses are conducted in statistical software SAS Enterprise Guide on data provided from the real advertising campaign. More than 160,000 statistical units enabled the confirm results gained on training dataset of a relatively huge validation dataset.en
dc.formattext
dc.identifier.doi10.15240/tul/001/2020-4-013
dc.identifier.eissn2336-5604
dc.identifier.issn1212-3609
dc.identifier.urihttps://dspace.tul.cz/handle/15240/158182
dc.language.isoen
dc.publisherTechnická Univerzita v Libercics
dc.publisherTechnical university of Liberec, Czech Republicen
dc.publisher.abbreviationTUL
dc.relation.isbasedonAllison, P. D. (2012). Logistic Regression using SAS. Theory and Application (2nd ed.). Cary, NC: SAS Institute.
dc.relation.isbasedonBaldi, P., Brunak, S., Chauvin, Y., Andersen, C. A., & Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics, 16(5), 412–424. https://doi.org/10.1093/bioinformatics/16.5.412
dc.relation.isbasedonBogaert, M., Ballings, M., Hosten, M., & Van den Poel, D. (2017). Identifying Soccer Players on Facebook Through Predictive Analytics. Decision Analysis, 14(4), 274–297. https://doi.org/10.1287/deca.2017.0354
dc.relation.isbasedonBose, I., & Chen, X. (2009). Quantitative models for direct marketing: A review from systems perspective. European Journal of Operational Research, 195(1), 1–16. https://doi.org/10.1016/j.ejor.2008.04.006
dc.relation.isbasedonBraun, M., & Moe, W. W. (2013). Online Display Advertising: Modeling the Effects of Multiple Creatives and Individual Impression Histories. Marketing Science, 32(5), 753–767. https://doi.org/10.1287/mksc.2013.0802
dc.relation.isbasedonChaffey, D., & Smith, P. R. (2017). Digital Marketing Excellence: Planning, Optimizing and Integrating Online Marketing. London: Taylor & Francis.
dc.relation.isbasedonDalessandro, B., Hook, R., Perlich, C., & Provost, F. (2015). Evaluating and Optimizing Online Advertising: Forget the Click, but There Are Good Proxies. Big data, 3(2), 90–102. https://doi.org/10.1089/big.2015.0006
dc.relation.isbasedonDe Bock, K., & Van den Poel, D. (2010). Predicting Website Audience Demographics forWeb Advertising Targeting Using Multi-Website Clickstream Data. Fundamenta Informaticae, 98(1), 49–70. https://doi.org/10.3233/FI-2010-216
dc.relation.isbasedonDave, K., & Varma, V. (2014). Computational Advertising: Techniques for Targeting Relevant Ads. Foundations and Trends® in Information Retrieval, 8(4–5), 263–418. https://doi.org/10.1561/1500000045
dc.relation.isbasedonChen, J., & Stallaert, J. (2014). An Economic Analysis of Online Advertising Using Behavioral Targeting. MIS Quarterly, 38(2), 429–449. http://dx.doi.org/10.2139/ssrn.1787608
dc.relation.isbasedonEurostat. (2019). Internet use and activities. Retrieved April 10, 2019, from http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do
dc.relation.isbasedonHosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression (2nd ed.). New York, NY: Wiley-Interscience Publication.
dc.relation.isbasedonIAB Slovakia. (2018). Výdavky do internetovej reklamy [Internet advertising spending]. Retrieved April 12, 2019, from https://www.iabslovakia.sk/vydavky-do-reklamy/objemy-internetovej-reklamy-sk-2017/
dc.relation.isbasedonIdrees, F., Rajarajan, M., Conti, M., Chen, T. M., & Rahulamathavan, Y. (2017). PIndroid: A novel Android malware detection system using ensemble learning methods. Computers & Security, 68, 36–46. https://doi.org/10.1016/j.cose.2017.03.011
dc.relation.isbasedonKapasný, J., & Řezáč, M. (2013). Three-way ROC analysis using SAS Software. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(7), 2269–2275. https://doi.org/10.11118/actaun201361072269
dc.relation.isbasedonKim, K., & Timm, N. (2006). Univariate and Multivariate General Linear Models: Theory and Applications with SAS. Boca Raton, FL: Chapman and Hall/CRC.
dc.relation.isbasedonKolman, L. K., Noorderhaven, N. G., Hofstede, G., & Dienes, E. (2003). Cross-cultural differences in Central Europe. Journal of Managerial Psychology, 18(1), 76–88. https://doi.org/10.1108/02683940310459600
dc.relation.isbasedonKostelic, K., & Pavlovic, D. K. (2018). Econometric assessment of consumers’ personality biases and communication preferences correlation. E&M Economics and Management, 21(3), 141–154. https://doi.org/10.15240/tul/001/2018-3-009
dc.relation.isbasedonLissitsa, S., & Kol, O. (2016). Generation X vs. Generation Y – A decade of online shopping. Journal of Retailing and Consumer Services, 31, 304–312. https://doi.org/10.1016/j.jretconser.2016.04.015
dc.relation.isbasedonLittell, R. C., Stroup, W. W., & Freund, R. J. (2010). SAS for Linear Models (4th revised ed.). Cary, NC: SAS Institute.
dc.relation.isbasedonMatch2One. (2019). What is Programmatic Advertising? The Ultimate Guide (2019). Retrieved April 15, 2019, from https://www.match2one.com/blog/what-is-programmatic-advertising/
dc.relation.isbasedonMcClure, A. C., Tanski, S. E., Li, Z., Jackson, K., Morgenstern, M., Li, Z., & Sargent, J. D. (2016). Internet Alcohol Marketing and Underage Alcohol Use. Pediatrics, 137(2), e20152149. https://doi.org/10.1542/peds.2015-2149
dc.relation.isbasedonMiralles-Pechuán, L., Ponce, H., & Martínez-Villaseñor, L. (2018). A novel methodology for optimizing display advertising campaigns using genetic algorithms. Electronic Commerce Research and Applications, 27, 39–51. https://doi.org/10.1016/j.elerap.2017.11.004
dc.relation.isbasedonML Wiki. (2015). Precision and Recall. Retrieved April 18, 2019, from http://mlwiki.org/index.php/Precision_and_Recall#Averaging
dc.relation.isbasedonOlivier, C., Eren, M., & Rosales, R. (2014). Simple and Scalable Response Prediction for Display Advertising. ACM Transactions on Intelligent Systems and Technology, 5(4), 1–34. https://doi.org/10.1145/2532128
dc.relation.isbasedonPagendarm, M., & Schaumburg, H. (2001). Why are Users Banner-Blind? The Impact of Navigation Style on the Perception of Web Banners. Journal of Digital Information, 2(1).
dc.relation.isbasedonPowers, D. M. W. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technology, 2(1), 37–63. https://doi.org/10.9735/2229-3981
dc.relation.isbasedonRecode. (2018). Advertisers will spend $40 billion more on internet ads than on TV ads this year. Retrieved April 12, 2019, from https://www.recode.net/2018/3/26/17163852/online-internet-advertisers-outspend-tv-ads-advertisers-social-video-mobile-40-billion-2018
dc.relation.isbasedonShan, L., Lin, L., Sun, C., & Wang, X. (2016). Predicting ad click-through rates via feature-based fully coupled interaction tensor factorization. Electronic Commerce Research and Applications, 16, 30–42. https://doi.org/10.1016/j.elerap.2016.01.004
dc.relation.isbasedonShouters Voice. (2018). What Are The Advantages And Disadvantages Of Digital Marketing In 2018. Retrieved April 10, 2019, from http://www.shoutersvoice.com/advantages-and-disadvantages-of-digital-marketing/
dc.relation.isbasedonSchuh, A. (2000). Global standardization as a success formula for marketing in Central Eastern Europe? Journal of World Business, 35(2), 133–148. https://doi.org/10.1016/S1090-9516(00)00029-8
dc.relation.isbasedonSchuh, A., & Holzmüller, H. (2003). Marketing Strategies of Western Consumer Goods Firms in Central and Eastern Europe. In H. J. Stüting, W. Dorow, F. Claassen, & S. Blazejewski (Eds.), Change Management in Transition Economies. London: Palgrave Macmillan.
dc.relation.isbasedonSkinner, H., Kubacki, K., Moss, G., & Chelly, D. (2008). International marketing in an enlarged European Union: Some insights into cultural heterogeneity in Central Europe. Journal of East European Management Studies, 13(3), 193–215. Retrieved June 9, 2020, from www.jstor.org/stable/23281167
dc.relation.isbasedonSPIR. (2019). 28,6 miliard korun investovali zadavatelé do internetové reklamy v roce 2018. Více než polovina obchodů proběhla programaticky [The clients invested 28.6 billion crowns in Internet advertising in 2018. More than half of the transactions took place programmatically]. Retrieved April 10, 2019, from http://www.spir.cz/28-6-miliard-korun-investovali-zadavatele-do-internetove-reklamy-v-roce-2018-vice-nez-polovina
dc.relation.isbasedonStankovičová, I., & Vojtková, M. (2007). Viacrozmerné štatistické metódy s aplikáciami [Multidimensional statistical methods with applications]. Bratislava: Iura Edition.
dc.relation.isbasedonTharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics (In press, corrected proof). https://doi.org/10.1016/j.aci.2018.08.003
dc.relation.isbasedonWooldridge, J. M. (2013). Introductory econometrics: A modern approach (5th ed.). Mason, OH: Thomson South-Western.
dc.relation.isbasedonYoo, C. Y., Kim, K., & Stout, P. A. (2004). Assessing the Effects of Animation in Online Banner Advertising: Hierarchy of Effects Model. Journal of Interactive Advertising, 4(2), 49–60. https://doi.org/10.1080/15252019.2004.10722087
dc.relation.ispartofEkonomie a Managementcs
dc.relation.ispartofEconomics and Managementen
dc.relation.isrefereedtrue
dc.rightsCC BY-NC
dc.subjectonline marketingen
dc.subjecttargetingen
dc.subjectlogistic regressionen
dc.subjectclassification metricsen
dc.subject.classificationM31
dc.subject.classificationC38
dc.titleTargeting of Online Advertising Using Logistic Regressionen
dc.typeArticleen
local.accessopen
local.citation.epage214
local.citation.spage197
local.facultyFaculty of Economics
local.filenameEM_4_2020_13
local.fulltextyes
local.relation.abbreviationE+Mcs
local.relation.abbreviationE&Men
local.relation.issue4
local.relation.volume23
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EM_4_2020_13.pdf
Size:
886.39 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections