An expanded conceptualization of “smart” cities: adding value with fuzzy cognitive maps

dc.contributor.authorMiguel, Bárbara P.
dc.contributor.authorFerreira, Fernando A. F.
dc.contributor.authorBanaitis, Audrius
dc.contributor.authorBanaitienė, Nerija
dc.contributor.authorMeidutė-Kavaliauskienė, Ieva
dc.contributor.authorFalcão, Pedro F.
dc.contributor.otherEkonomická fakultacs
dc.date.accessioned2019-03-15
dc.date.available2019-03-15
dc.date.issued2019-03-15
dc.description.abstractThe world’s rapidly growing population is an issue to be taken seriously. Its consequences could be dramatic if the required steps are not taken. Concerns about this problem have led to the creation of “smart” cities, which promote improvements in citizens’ quality of life through a combination of new technologies and environmentally sustainable practices. For these cities to be truly “smart”, they need to be evaluated in order to understand the areas in which interventions are necessary to make these cities economically stable and environmentally sustainable. In this regard, various studies have sought to understand which indicators should be considered in assessments of smart cities and how this process should be conducted. Thus far, however, researchers have found that using “loose” indicators, which measure only some areas of these cities, is insufficient. That said, this study proposes the use of fuzzy cognitive maps to analyze the dynamics behind smart cities’ components. Grounded in intensive group meetings with a panel of experts in different dimensions of these cities, the method applied produced a well-informed, process-oriented framework that contains the characteristics and components that should be assessed in this type of city. Specifically, after a fuzzy cognitive map was constructed based on the direct involvement of the expert participants, six main clusters were extracted as key components in the development of smart cities. These clusters were: people; planning and environments; technology; infrastructure and materials; services; and transportation and mobility. The results also facilitate an improved understanding of smart cities’ cause-and-effect relationships and better strategic planning by urban planners and city administrators. The implications, advantages, and limitations of the proposed framework are also presented.en
dc.formattext
dc.format.extent18 strancs
dc.identifier.doi10.15240/tul/001/2019-1-001
dc.identifier.eissn2336-5604
dc.identifier.issn1212-3609
dc.identifier.orcid0000-0002-3302-1209 Banaitis, Audrius
dc.identifier.urihttps://dspace.tul.cz/handle/15240/151418
dc.language.isoen
dc.publisherTechnická Univerzita v Libercics
dc.publisherTechnical university of Liberec, Czech Republicen
dc.publisher.abbreviationTUL
dc.relation.isbasedonAckermann, F., & Eden, C. (2001). SODA – Journey making and mapping in practice. In J. Rosenhead, & J. Mingers (Eds.), Rational analysis for a problematic world revisited: problem structuring methods for complexity, uncertainty and conflict (pp. 43-60). Chichester: John Wiley & Sons.
dc.relation.isbasedonAhvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities? Cities, 60, 234-245. https://doi.org/10.1016/j.cities.2016.09.009.
dc.relation.isbasedonAlbayrak, A., & Albayrak, M. (2016). Performance evaluation of practice courses using fuzzy cognitive maps. In 2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET) (pp. 1-7). https://doi.org/10.1109/ITHET.2016.7760730.
dc.relation.isbasedonAlbino, V., Berardi, U., & Dangelico, R. M. (2015). Smart Cities: Definitions, Dimensions, Performance, and Initiatives. Journal of Urban Technology, 22(1), 3-21. https://doi.org/10.1080/10630732.2014.942092.
dc.relation.isbasedonAzevedo, A., & Ferreira, F. (2017). Analyzing the dynamics behind ethical banking practices using fuzzy cognitive mapping. Operational Research. https://doi.org/10.1007/s12351-017-0333-6.
dc.relation.isbasedonBakici, T., Almirall, E., & Wareham, J. (2013). A Smart City Initiative: the Case of Barcelona. Journal of the Knowledge Economy, 4(2), 135-148. https://doi.org/10.1007/s13132-012-0084-9.
dc.relation.isbasedonBell, S., & Morse, S. (2013). Groups and facilitators within problem structuring processes. Journal of the Operational Research Society, 64(7), 959-972. https://doi.org/10.1057/jors.2012.110.
dc.relation.isbasedonCarlucci, D., Schiuma, G., Gavrilova, T., & Linzalone, R. (2013, June). A fuzzy cognitive map based approach to disclose value creation dynamics of ABIs. Proceedings of the 8th International Forum on Knowledge Asset Dynamics (IFKAD-2013) (pp. 207-219). Zagreb, Croatia.
dc.relation.isbasedonCarvalho, J. (2013). On the semantics and the use of fuzzy cognitive maps and dynamic cognitive maps in social sciences. Fuzzy Sets and Systems, 214, 6-19. https://doi.org/10.1016/j.fss.2011.12.009.
dc.relation.isbasedonCauchon, D. (2017). The promise of smart cities. Electric Perspectives, 42(1), 34-41.
dc.relation.isbasedonChen, C., & Chiu, Y. (2016). A study of fuzzy cognitive map model with dynamic adjustment method for the interaction weights. In 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE) (pp. 699-702). https://doi.org/10.1109/ICAMSE.2016.7840193.
dc.relation.isbasedonDall’O’, G., Bruni, E., Panza, A., Sarto, L., & Khayatian, F. (2017). Evaluation of cities’ smartness by means of indicators for small and medium cities and communities: A methodology for Northern Italy. Sustainable Cities and Society, 34, 193-202. https://doi.org/10.1016/j.scs.2017.06.021.
dc.relation.isbasedonEstrada, E., Maciel, R., Ortíz Zezzatti, C., Bernabe-Loranca, B., Oliva, D., & Larios, V. (2018). Smart City Visualization Tool for the Open Data Georeferenced Analysis Utilizing Machine Learning. International Journal of Combinatorial Optimization Problems and Informatics, 9(2), 25-40.
dc.relation.isbasedonFaria, P., Ferreira, F., Jalali, M., Bento, P., & António, N. (2018). Combining cognitive mapping and MCDA for improving quality of life in urban areas. Cities, 78, 116-127. https://doi.org/10.1016/j.cities.2018.02.006.
dc.relation.isbasedonFernandes, I., Ferreira, F., Bento, P., Jalali, M., & António, N. (2018). Assessing sustainable development in urban areas using cognitive mapping and MCDA. International Journal of Sustainable Development & World Ecology, 25(3), 216-226. https://doi.org/10.1080/13504509.2017.1358221.
dc.relation.isbasedonFerreira, F., & Jalali, M. (2015). Identifying key determinants of housing sales and time-on-the-market (TOM) using fuzzy cognitive mapping. International Journal of Strategic Property Management, 19(3), 235-244. https://doi.org/10.3846/1648715X.2015.1052587.
dc.relation.isbasedonFerreira, F., Jalali, M., & Ferreira, J. (2016a). Experience-focused thinking and cognitive mapping in ethical banking practices: From practical intuition to theory. Journal of Business Research, 69(11), 4953-4958. https://doi.org/10.1016/j.jbusres.2016.04.058.
dc.relation.isbasedonFerreira, F., Jalali, M., & Ferreira, J. (2016b). Integrating qualitative comparative analysis (QCA) and fuzzy cognitive maps (FCM) to enhance the selection of independent variables. Journal of Business Research, 69(4), 1471-1478. https://doi.org/10.1016/j.jbusres.2015.10.127.
dc.relation.isbasedonFerreira, F., Jalali, M., Ferreira, J., Stankevičienė, J., & Marques, C. (2016c). Understanding the dynamics behind bank branch service quality in Portugal: pursuing a holistic view using fuzzy cognitive mapping. Service Business, 10(3), 469-487. https://doi.org/10.1007/s11628-015-0278-x.
dc.relation.isbasedonFerreira, F., Jalali, M., Meidutė-Kavaliauskienė, I., & Viana, B. (2015). A metacognitive decision making based-framework for bank customer loyalty measurement and management. Technological and Economic Development of Economy, 21(2), 280-300. https://doi.org/10.3846/20294913.2014.981764.
dc.relation.isbasedonFerreira, F., Spahr, R., Sunderman, M., Banaitis, A., & Ferreira, J. (2017). A learning-oriented decision-making process for real estate brokerage service evaluation. Service Business, 11(3), 453-474. https://doi.org/10.1007/s11628-016-0315-4.
dc.relation.isbasedonFonseca, M., Ferreira, F., Fang, W., & Jalali, M. (2018). Classification and selection of tenants in residential real estate: a constructivist approach. International Journal of Strategic Property Management, 22(1), 1-11. https://doi.org/10.3846/ijspm.2018.317.
dc.relation.isbasedonGavrilova, T., Carlucci, D., & Schiuma, G. (2013). Art of visual thinking for smart business education. In Proceedings of the 8th international forum on knowledge asset dynamics (IFKAD-2013). 12-14 June 2013, Zagreb, Croatia (pp. 1754-1761).
dc.relation.isbasedonGlykas, M. (2013). Fuzzy cognitive strategic maps in business process performance measurement. Expert Systems with Applications, 40(1), 1-14. https://doi.org/10.1016/j.eswa.2012.01.078.
dc.relation.isbasedonGray, S., Gray, S., Cox, L., & Henly-Shepard, S. (2013). Mental Modeler: A Fuzzy-Logic Cognitive Mapping Modeling Tool for Adaptive Environmental Management. In 2013 46th Hawaii International Conference on System Sciences (pp. 965-973). https://doi.org/10.1109/HICSS.2013.399.
dc.relation.isbasedonHajduk, S. (2016). The concept of a smart city in urban management. Business, Management and Education, 14(1), 34-49. https://doi.org/10.3846/bme.2016.319.
dc.relation.isbasedonHuovila, A., Airaksinen, M., Pinto-Seppä, I., Piira, K., Bosch, P., Penttinen, T., Neumann, H.-M., & Kontinakis, N. (2017). CITYkeys smart city performance measurement system. International Journal for Housing Science and Its Applications, 41(2), 113-125.
dc.relation.isbasedonJorga, I., Mastrappas, S., & Damigos, D. (2018). Identifying contributing factors to progress in karate-do using the fuzzy cognitive mapping approach. Ido Movement for Culture, Journal of Martial Arts Anthropology, 18(1), 15-22. https://doi.org/10.14589/ido.18.1.3.
dc.relation.isbasedonKeršulienė, V., & Turskis, Z. (2011). Integrated fuzzy multiple criteria decision making model for architect selection. Technological and Economic Development of Economy, 17(4), 645-666. https://doi.org/10.3846/20294913.2011.635718.
dc.relation.isbasedonKhan, M., & Quaddus, M. (2004). Group Decision Support Using Fuzzy Cognitive Maps for Causal Reasoning. Group Decision and Negotiation, 13(5), 463-480. https://doi.org/10.1023/B:GRUP.0000045748.89201.f3.
dc.relation.isbasedonKhatoun, R., & Zeadally, S. (2016). Smart cities: Concepts, architectures, research, opportunities. Communications of the ACM, 59(8), 46-57. https://doi.org/10.1145/2858789.
dc.relation.isbasedonKok, K. (2009). The potential of Fuzzy Cognitive Maps for semi-quantitative scenario development, with an example from Brazil. Global Environmental Change, 19(1), 122-133. https://doi.org/10.1016/j.gloenvcha.2008.08.003.
dc.relation.isbasedonKosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1), 65-75. https://doi.org/10.1016/S0020-7373(86)80040-2.
dc.relation.isbasedonLee, D., & Lee, H. (2015). Construction of holistic Fuzzy Cognitive Maps using ontology matching method. Expert Systems with Applications, 42(14), 5954-5962. https://doi.org/10.1016/j.eswa.2015.03.020.
dc.relation.isbasedonMallapuram, S., Ngwum, N., Yuan, F., Lu, C., & Yu, W. (2017). Smart city: The state of the art, datasets, and evaluation platforms. In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS) (pp. 447-452). https://doi.org/10.1109/ICIS.2017.7960034.
dc.relation.isbasedonMarques, S., Ferreira, F., Meidutė-Kavaliauskienė, I., & Banaitis, A. (2018). Classifying urban residential areas based on their exposure to crime: A constructivist approach. Sustainable Cities and Society, 39, 418-429. https://doi.org/10.1016/j.scs.2018.03.005.
dc.relation.isbasedonMazlack, L. (2009). Representing Causality Using Fuzzy Cognitive Maps. In NAFIPS 2009 – 2009 Annual Meeting of the North American Fuzzy Information Processing Society (pp. 1-6). https://doi.org/10.1109/NAFIPS.2009.5156434.
dc.relation.isbasedonMls, K., Cimler, R., Vaščák, J., & Puheim, M. (2017). Interactive evolutionary optimization of fuzzy cognitive maps. Advances in Fuzzy Cognitive Maps Theory, 232, 58-68. https://doi.org/10.1016/j.neucom.2016.10.068.
dc.relation.isbasedonOliveira, I., Carayannis, E., Ferreira, F., Jalali, M., Carlucci, D., & Ferreira, J. (2018). Constructing home safety indices for strategic planning in residential real estate: A socio-technical approach. Technological Forecasting and Social Change, 131, 67-77. https://doi.org/10.1016/j.techfore.2017.10.012.
dc.relation.isbasedonPapageorgiou, E., Hatwágner, M., Buruzs, A., & Kóczy, L. (2017). A concept reduction approach for fuzzy cognitive map models in decision making and management. Neurocomputing, 232, 16-33. https://doi.org/10.1016/j.neucom.2016.11.060.
dc.relation.isbasedonPapageorgiou, E., Roo, J., Huszka, C., & Colaert, D. (2012). Formalization of treatment guidelines using Fuzzy Cognitive Maps and semantic web tools. Journal of Biomedical Informatics, 45(1), 45-60. https://doi.org/10.1016/j.jbi.2011.08.018.
dc.relation.isbasedonPires, A., Ferreira, F., Jalali, M., & Chang, H. (2018). Barriers to real estate investments for residential rental purposes: mapping out the problem. International Journal of Strategic Property Management, 22(3), 168-178. https://doi.org/10.3846/ijspm.2018.1541.
dc.relation.isbasedonPopescu, G. (2015). The economic value of smart city technology. Economics, Management, and Financial Markets, 10(4), 76-82.
dc.relation.isbasedonRibeiro, M., Ferreira, F., Jalali, M., & Meidutė-Kavaliauskienė, I. (2017). A fuzzy knowledge-based framework for risk assessment of residential real estate investments. Technological and Economic Development of Economy, 23(1), 140-156. https://doi.org/10.3846/20294913.2016.1212742.
dc.relation.isbasedonRoman, K. (2018). Analysis and evaluation of the implementation level of the smart city concept in selected polish cities. BRAIN – Broad Research in Artificial Intelligence and Neuroscience, 9(1), 138-145.
dc.relation.isbasedonSalmeron, J. (2012). Fuzzy cognitive maps for artificial emotions forecasting. Applied Soft Computing, 12(12), 3704-3710. https://doi.org/10.1016/j.asoc.2012.01.015.
dc.relation.isbasedonSantos, F., Ferreira, F., & Meidutė-Kavaliauskienė, I. (2018). Perceived key determinants of payment instrument usage: A fuzzy cognitive mapping-based approach. Technological and Economic Development of Economy, 24(3), 950-968. https://doi.org/10.3846/20294913.2016.1261374.
dc.relation.isbasedonŠiurytė, A., & Davidavičienė, V. (2016). An analysis of key factors in developing a smart city. Science – Future of Lithuania, 8(2), 254-262. https://doi.org/10.3846/mla.2016.900.
dc.relation.isbasedonSofronijević, A., Milićević, V., & Ilić, B. (2014). Smart city as framework for creating competitive advantages in international business management. Management, 19(71), 5-15. https://doi.org/10.7595/management.fon.2014.0015.
dc.relation.isbasedonStach, W., Kurgan, L., Pedrycz, W., & Reformat, M. (2005). Genetic learning of fuzzy cognitive maps. Fuzzy Sets and Systems, 153(3), 371-401. https://doi.org/10.1016/j.fss.2005.01.009.
dc.relation.isbasedonStylios, C., & Groumpos, P. (1998). The challenge of modelling supervisory systems using fuzzy cognitive maps. Journal of Intelligent Manufacturing, 9(4), 339-345. https://doi.org/10.1023/A:1008978809938.
dc.relation.isbasedonSwan, J. (1997). Using Cognitive Mapping in Management Research: Decisions about Technical Innovation. British Journal of Management, 8(2), 183-198. https://doi.org/10.1111/1467-8551.0050.
dc.relation.isbasedonTegarden, D., & Sheetz, S. (2003). Group cognitive mapping: a methodology and system for capturing and evaluating managerial and organizational cognition. Omega, 31(2), 113-125. https://doi.org/10.1016/S0305-0483(03)00018-5.
dc.relation.isbasedonTolman, E. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189-208. http://dx.doi.org/10.1037/h0061626.
dc.relation.isbasedonToschi, G., Campos, L., & Cugnasca, C. (2017). Home automation networks: A survey. Computer Standards & Interfaces, 50, 42-54. https://doi.org/10.1016/j.csi.2016.08.008.
dc.relation.isbasedonVillage, J., Greig, M., Salustri, F., & Neumann, W. (2012). Linking human factors to corporate strategy with cognitive mapping techniques. International Ergonomics Association Conference, 41(1), 2776-2780.
dc.relation.isbasedonWong, C. (2010). Cognitive mapping on user interface design. In 2010 International Conference on Computer Applications and Industrial Electronics (pp. 288-293). https://doi.org/10.1109/ICCAIE.2010.5735091.
dc.relation.isbasedonYaman, D., & Polat, S. (2009). A fuzzy cognitive map approach for effect-based operations: An illustrative case. Information Sciences, 179(4), 382-403. https://doi.org/10.1016/j.ins.2008.10.013.
dc.relation.isbasedonZadeh, L. (2008). Is there a need for fuzzy logic? Information Sciences, 178(13), 2751-2779. https://doi.org/10.1016/j.ins.2008.02.012
dc.relation.ispartofEkonomie a Managementcs
dc.relation.ispartofEconomics and Managementen
dc.relation.isrefereedtrue
dc.rightsCC BY-NC
dc.subjectsmarten
dc.subjectsmart cityen
dc.subjectsmart economyen
dc.subjectsmart environmenten
dc.subjectsmart governanceen
dc.subjectsmart mobilityen
dc.subjectcause and effect dynamicsen
dc.subjectfuzzy cognitive mappingen
dc.subject.classificationC44
dc.subject.classificationC45
dc.subject.classificationM10
dc.subject.classificationR11
dc.titleAn expanded conceptualization of “smart” cities: adding value with fuzzy cognitive mapsen
dc.typeArticleen
local.accessopen
local.citation.epage21
local.citation.spage4
local.facultyFaculty of Economics
local.filenameEM_1_2019_01
local.fulltextyes
local.relation.abbreviationE+Mcs
local.relation.abbreviationE&Men
local.relation.issue1
local.relation.volume22
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EM_1_2019_01.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections