Optimization of inventory cost control for SMEs in supply chain transformation: A case study and discussion

dc.contributor.authorZheng, Xiaosong
dc.contributor.authorChen, Yilin
dc.contributor.otherEkonomická fakultacs
dc.description.abstractWith the continuous transformation of supply chains in various industries in China, the strategic landscape, industrial structure, industry rules, business models, and management logic have all changed dramatically, and the consumer market has become more demanding regarding pre-sales quality and after-sales service. Primarily for distribution companies whose primary business model is “buy and sell products and earn a profit margin,” the supply chain transformation has placed higher demands on inventory cost control. In this study, we propose an integrated approach for optimization of inventory cost control of internal supply chain management. The integrated approach includes an improved ABC inventory classification method, spare parts demand forecasting, and an adapted inventory management method. We then select a small and medium-sized home appliance distribution company as the case study because the company is at its early stage of inventory transformation due to the supply chain transformation. Using the case study and field research methods, we analyzed the specific impact of supply chain transformation on the company’s inventory cost control and demonstrated the efficiency of the integrated approach. This study finds that the case company can control inventory costs more efficiently and effectively after implementing the improved ABC inventory classification method. The proposed different demand forecasting plans can help improve the accuracy of spare parts demand forecasting. Finally, different inventory management methods based on different classifications of spare parts can help determine the appropriate spare parts ordering point and procurement quantity.en
dc.publisherTechnická Univerzita v Libercics
dc.publisherTechnical university of Liberec, Czech Republicen
dc.relation.isbasedonAamer, A., Sahara, C. R., & Al-Awlaqi, M. A. (2023). Digitalization of the supply chain: Transformation factors. Journal of Science and Technology Policy Management, 14(4), 713–733. https://doi.org/10.1108/jstpm-01-2021-0001
dc.relation.isbasedonAgarwal, R., & Helfat, C. E. (2009). Strategic renewal of organizations. Organization Science, 20(2), 281–293. https://doi.org/10.1287/ orsc.1090.0423
dc.relation.isbasedonAgeron, B., Bentahar, O., & Gunasekaran, A. (2020). Digital supply chain: Challenges and future directions. Supply Chain Forum: An International Journal, 21(3), 133–138. https:// doi.org/10.1080/16258312.2020.1816361
dc.relation.isbasedonAlMulhim, A. F. (2021). Smart supply chain and firm performance: The role of digital technologies. Business Process Management Journal, 27(5), 1353–1372. https://doi.org/10.1108/ bpmj-12-2020-0573
dc.relation.isbasedonAlzarooni, A. M., Khan, S. A., Gunasekaran, A., & Mubarik, M. S. (2022). Enablers for digital supply chain transformation in the service industry. Annals of Operations Research. https://doi.org/10.1007/s10479-022-05047-x
dc.relation.isbasedonAttaran, M. (2020). Digital technology enablers and their implications for supply chain management. Supply Chain Forum: An International Journal, 21(3), 158–172. https://doi.org/ 10.1080/16258312.2020.1751568
dc.relation.isbasedonBacchetti, A., & Saccani, N. (2012). Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice. Omega, 40(6), 722–737. https://doi.org/10.1016/j.omega.2011.06.008
dc.relation.isbasedonBasu, R. (2023). Managing global supply chains (3rd ed.). Routledge.
dc.relation.isbasedonBeaulieu, M., & Bentahar, O. (2021). Digitalization of the healthcare supply chain: A roadmap to generate benefits and effectively support healthcare delivery. Technological Forecasting and Social Change, 167, 120717. https://doi.org/10.1016/j.techfore.2021.120717
dc.relation.isbasedonBen-Menahem, S. M., Kwee, Z., Volberda, H. W., & Van Den Bosch, F. A. J. (2013). Strategic renewal over time: The enabling role of potential absorptive capacity in aligning internal and external rates of change. Long Range Planning, 46(3), 216–235. https://doi. org/10.1016/j.lrp.2012.09.012
dc.relation.isbasedonBigliardi, B., Filippelli, S., Petroni, A., & Tagliente, L. (2022). The digitalization of supply chain: A review. Procedia Computer Science, 200, 1806–1815. https://doi.org/10.1016/j.procs. 2022.01.381
dc.relation.isbasedonBoylan, J. E., & Syntetos, A. A. (2010). Spare parts management: A review of forecasting research and extensions. IMA Journal of Management Mathematics, 21(3), 227–237. https://doi.org/10.1093/imaman/dpp016
dc.relation.isbasedonChapman, R. L., Soosay, C., & Kandampully, J. (2003). Innovation in logistic services and the new business model: A conceptual framework. International Journal of Physical Distribution & Logistics Management, 33(7), 630–650. https://doi.org/10.1108/09600030310499295
dc.relation.isbasedonChowdhury, T., Adafin, J., & Wilkinson, S. (2019). Review of digital technologies to improve productivity of New Zealand construction industry. Journal of Information Technology in Construction, 24(2019VMAR), 569–587. https:// doi.org/10.36680/j.itcon.2019.032
dc.relation.isbasedonChristopher, M. (2016). Logistics & supply chain management (5th ed.). Pearson.
dc.relation.isbasedonCohen, S., & Roussel, J. (2013). Strategic supply chain management: The five core disciplines for top performance (2nd ed.). McGraw-Hill.
dc.relation.isbasedonDey, P. K., Chowdhury, S., Abadie, A., Vann Yaroson, E., & Sarkar, S. (2023). Artificial intelligence- driven supply chain resilience in Vietnamese manufacturing small- and medium-sized enterprises. International Journal of Production Research, 1–40. https://doi.org/10.1080/ 00207543.2023.2179859
dc.relation.isbasedonEraslan, E., & İÇ, Y. T. (2020). An improved decision support system for ABC inventory classification. Evolving Systems, 11(4), 683–696. https://doi.org/10.1007/s12530-019-09276-7
dc.relation.isbasedonGagliardi, A. R., Festa, G., Usai, A., Dell’Anno, D., & Rossi, M. (2023). The impact of knowledge management on the digital supply chain – A bibliometric literature review. International Journal of Physical Distribution & Logistics Management, 53(5/6), 612–627. https://doi. org/10.1108/ijpdlm-07-2022-0206
dc.relation.isbasedonGovindasamy, C., Antonidoss, A., & Pandiaraj, A. (2022). Cost optimization for inventory management in blockchain and cloud. In R. Kanthavel, K. Ananthajothi, S. Balamurugan, & R. K. Ganesh (Eds.), Artificial intelligent techniques for wireless communication and networking (pp. 59–74). Wiley. https://doi. org/10.1002/9781119821809.ch5
dc.relation.isbasedonGuo, L., Chen, J., Li, S., Li, Y., & Lu, J. (2022). A blockchain and IoT-based lightweight framework for enabling information transparency in supply chain finance. Digital Communications and Networks, 8(4), 576–587. https:// doi.org/10.1016/j.dcan.2022.03.020
dc.relation.isbasedonHamann-Lohmer, J., Bendig, M., & Lasch, R. (2023). Investigating the impact of digital transformation on relationship and collaboration dynamics in supply chains and manufacturing networks – A multi-case study. International Journal of Production Economics, 262, 108932. https://doi.org/10.1016/j.ijpe.2023.108932
dc.relation.isbasedonHanafi, R., Mardin, F., Asmal, S., Setiawan, I., & Wijaya, S. (2019). Toward a green inventory controlling using the ABC classification analysis: A case of motorcycle spares parts shop. IOP Conference Series: Earth and Environmental Science, 343(1), 012012. https://doi. org/10.1088/1755-1315/343/1/012012
dc.relation.isbasedonHo, W. R., Tsolakis, N., Dawes, T., Dora, M., & Kumar, M. (2023). A digital strategy development framework for supply chains. IEEE Transactions on Engineering Management, 70(7), 2493–2506. https://doi.org/ 10.1109/tem.2021.3131605
dc.relation.isbasedonHoltström, J. (2022). Business model innovation under strategic transformation. Technology Analysis & Strategic Management, 34(5), 550–562. https://doi.org/10.1080/09537325. 2021.1914329
dc.relation.isbasedonKhan, M. N., & Sinha, A. K. (2022). Development of a sustainable supply chain network for the cement manufacturing industry using real-coded genetic algorithm. Soft Computing, 26(22), 12235–12255. https://doi.org/10.1007/ s00500-022-07054-3
dc.relation.isbasedonKharub, M., Mor, R. S., & Sharma, R. (2019). The relationship between cost leadership competitive strategy and firm performance: A mediating role of quality management. Journal of Manufacturing Technology Management, 30(6), 920–936. https://doi.org/10.1108/ jmtm-06-2017-0116
dc.relation.isbasedonKheybari, S., Naji, S. A., Rezaie, F. M., & Salehpour, R. (2019). ABC classification according to Pareto’s principle: A hybrid methodology. OPSEARCH, 56(2), 539–562. https://doi. org/10.1007/s12597-019-00365-4
dc.relation.isbasedonKumar, S., Raut, R. D., Priyadarshinee, P., & Narkhede, B. E. (2023). Exploring warehouse management practices for adoption of IoT-blockchain. Supply Chain Forum: An International Journal, 24(1), 43–58. https://doi.org/ 10.1080/16258312.2022.2082852
dc.relation.isbasedonLang, L. D., Behl, A., Phuong, N. N. D., Gaur, J., & Dzung, N. T. (2022). Toward SME digital transformation in the supply chain context: The role of structural social and human capital. International Journal of Physical Distribution & Logistics Management, 53(4), 448–466. https://doi.org/10.1108/ijpdlm-12-2021-0525
dc.relation.isbasedonLi, N., Liu, D., & Boadu, F. (2023). The impact of digital supply chain capabilities on enterprise sustainable competitive performance: An ambidextrous view. Industrial Management & Data Systems, 123(6), 1670–1689. https:// doi.org/10.1108/imds-11-2022-0699
dc.relation.isbasedonLi, Z., Wu, X., Liu, F., Fu, Y., & Chen, K. (2019). Multicriteria ABC inventory classification using acceptability analysis. International Transactions in Operational Research, 26(6), 2494–2507. https://doi.org/10.1111/ itor.12412
dc.relation.isbasedonMacCarthy, B. L., Blome, C., Olhager, J., Srai, J. S., & Zhao, X. (2016). Supply chain evolution – Theory, concepts and science. International Journal of Operations & Production Management, 36(12), 1696–1718. https://doi.org/ 10.1108/ijopm-02-2016-0080
dc.relation.isbasedonMin, S., Zacharia, Z. G., & Smith, C. D. (2019). Defining supply chain management: In the past, present, and future. Journal of Business Logistics, 40(1), 44–55. https://doi.org/ 10.1111/jbl.12201
dc.relation.isbasedonMuntaka, A. S., Agyei-Owusu, B., Manso, J. F., & Kankam-Boadu, E. (2023). Pursuing transport digitalisation to achieve transport cost optimisation. Supply Chain Forum: An International Journal, 1–13. https://doi.org/10.1080/ 16258312.2023.2238667
dc.relation.isbasedonPerano, M., Cammarano, A., Varriale, V., Del Regno, C., Michelino, F., & Caputo, M. (2023). Embracing supply chain digitalization and unphysicalization to enhance supply chain performance: A conceptual framework. International Journal of Physical Distribution & Logistics Management, 53(5/6), 628–659. https://doi. org/10.1108/ijpdlm-06-2022-0201
dc.relation.isbasedonPflaum, A., Prockl, G., Bodendorf, F., & Chen, H. (2023). The digital supply chain of the future: From drivers to technologies and applications. In T. X. Bui (Ed.), Proceedings of the 56th Hawaii International Conference on System Sciences (pp. 4492–4494). Hawaii International Conference on System Sciences (HICSS). https://doi.org/10125/103178
dc.relation.isbasedonPorter, M. (2008). On competition [Updated and expanded edition]. Harvard Business Press.
dc.relation.isbasedonPreindl, R., Nikolopoulos, K., & Litsiou, K. (2020). Transformation strategies for the supply chain: The impact of Industry 4.0 and digital transformation. Supply Chain Forum: An International Journal, 21(1), 26–34. https://doi.org/ 10.1080/16258312.2020.1716633
dc.relation.isbasedonQu, L., & Zhang, Q. (2006). Literature review of spare parts inventory management. Research and Exploration in Laboratory, 7, 875–880.
dc.relation.isbasedonRasool, F., Greco, M., & Strazzullo, S. (2023). Understanding the future KPI needs for digital supply chain. Supply Chain Forum: An International Journal, 1–12. https://doi.org/ 10.1080/16258312.2023.2253524 Sarkar, S. (2023). ABC classification using extended R-model, SVM and Lorenz curve. OPSEARCH, 60(3), 1433–1455. https://doi.org/ 10.1007/s12597-023-00679-4 Saryatmo, M. A., & Sukhotu, V. (2021). The influence of the digital supply chain on operational performance: A study of the food and beverage industry in Indonesia. Sustainability, 13(9), 5109. https://doi.org/ 10.3390/su13095109 Sharma, M., Kumar, A., Luthra, S., Joshi, S., & Upadhyay, A. (2022). The impact of environmental dynamism on low‐carbon practices and digital supply chain networks to enhance sustainable performance: An empirical analysis. Business Strategy and the Environment, 31(4), 1776–1788. https://doi.org/10.1002/ bse.2983 Shen, H. C., Tao, Q., & Chen, Y. B. (2000). Supply chain management theory and methods. Chinese Journal of Management Science, 1, 1–9. https://doi.org/10.16381/j.cnki. issn1003-207x.2000.01.001 Sui, M. G., & Wei, Y. (2000). Literature review: Current status of supply chain inventory cost research and its development trends. Logistics Technology, 5, 28–29. Tavassoli, M., & Farzipoor Saen, R. (2022). A stochastic data envelopment analysis approach for multi-criteria ABC inventory classification. Journal of Industrial and Production Engineering, 39(6), 415–429. https://doi.org/ 10.1080/21681015.2022.2037761 Tripsas, M. (2010). Customer preference discontinuities: A trigger for radical technological change. Managerial and Decision Economics, 29(2–3), 79–97. https://doi.org/10.1002/ mde.1389 Xiao, J. (2015). The supply chain transformation from being partner-oriented to being customer-oriented: A double-case study on the supply chains in ecommerce enterprises. Management World, 4, 137–154. https://doi.org/ 10.19744/j.cnki.11-1235/f.2015.04.013 Yin, W. (2023). Identifying the pathways through digital transformation to achieve supply chain resilience: An fsQCA approach. Environmental Science and Pollution Research, 30(4), 10867–10879. https://doi.org/10.1007/s11356- 022-22917-w Yu, W., Hou, G., Xia, P., & Li, J. (2019). Supply chain joint inventory management and cost optimization based on ant colony algorithm and fuzzy model. Tehnicki Vjesnik, 26(6), 1729–1737. https://doi.org/10.17559/tv-20190805123158 Yung, K. L., Ho, G. T. S., Tang, Y. M., & Ip, W. H. (2021). Inventory classification system in space mission component replenishment using multi-attribute fuzzy ABC classification. Industrial Management & Data Systems, 121(3), 637–656. https://doi.org/10.1108/imds- 09-2020-0518 Zhao, Z., Chen, R., & Cui, N. (2004). Twoechelon storage mode of spare parts in process industry. Industrial Engineering and Management, 6, 61–64. https://doi.org/10.19495/j. cnki.1007-5429.2004.06.015 Zowid, F. M., Babai, M. Z., Douissa, M. R., & Ducq, Y. (2019). Multi-criteria inventory ABC classification using Gaussian mixture model. IFAC-PapersOnLine, 52(13), 1925–1930. https://doi.org/10.1016/j.ifacol.2019.11.484
dc.relation.ispartofEkonomie a Managementcs
dc.relation.ispartofEconomics and Managementen
dc.rightsCC BY-NC
dc.subjectSupply chainen
dc.subjectinventory costen
dc.subjectspare partsen
dc.subjectdistribution companyen
dc.titleOptimization of inventory cost control for SMEs in supply chain transformation: A case study and discussionen
local.facultyFaculty of Economics
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
941.74 KB
Adobe Portable Document Format