INTEGRATED APPROACH OF FUZZY MULTI-ATTRIBUTE DECISION MAKING AND DATA MINING FOR CUSTOMER SEGMENTATION

dc.contributor.authorRay, Manidatta
dc.contributor.authorRay, Mamata
dc.contributor.authorMuduli, Kamalakanta
dc.contributor.authorBanaitis, Audrius
dc.contributor.authorKumar, Anil
dc.contributor.otherEkonomická fakultacs
dc.date.accessioned2021-12-09T09:34:59Z
dc.date.available2021-12-09T09:34:59Z
dc.description.abstractThis research work focuses on integrating the multi attribute decision making with data mining in a fuzzy decision environment for customer relationship management. The main objective is to analyse the relation between multi attribute decision making and data mining considering a complex problem of ordering customers segments, which is based on four criteria of customer’s life time value, viz. length (L), recency (R), frequency (F) and monetary value (M). The proposed integrated approach involves fuzzy C-means (FCM) cluster analysis as data mining tool. The experiment conducted using MATLAB 12.0 for identifying eight clusters of customers. The two multi attribute decision making tools i.e., fuzzy AHP (Analytic Hierarchy Process) and fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) are used for ranking these identified clusters. The applicability of the integrated decision making technique is also demonstrated in this paper considering the case of Indian retail sector. This research collected responses from nine experts from Indian retail industry regarding their perception of relative importance of four criteria of customer life value and evaluated weights of each criterion using fuzzy AHP. Transaction data of 18 months of the case retail store was analysed to segment 1,600 customers into eight clusters using fuzzy c-means clustering analysis technique. Finally, these eight clusters were ranked using fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). The findings of this research could be helpful for firms in identifying the more valuable customers for them and allocate more resources to satisfy them. The findings will be also helpful in developing different loyalty program strategies for customers of different clusters.en
dc.formattext
dc.identifier.doi10.15240/tul/001/2021-4-011
dc.identifier.eissn2336-5604
dc.identifier.issn1212-3609
dc.identifier.urihttps://dspace.tul.cz/handle/15240/161032
dc.language.isoen
dc.publisherTechnická Univerzita v Libercics
dc.publisherTechnical university of Liberec, Czech Republicen
dc.publisher.abbreviationTUL
dc.relation.isbasedonAghdaie, M. H., Hashemkhani Zolfani, S., & Zavadskas, E. K. (2014). Synergies of data mining and multiple attribute decision making. Procedia Social and Behavioural Sciences, 110, 767–776. https://doi.org/10.1016/j.sbspro.2013.12.921
dc.relation.isbasedonAmiri, M., Hashemi-Tabatabaei, M., Ghahremanloo, M., Keshavarz-Ghorabaee, M., Zavadskas, E. K., & Banaitis, A. (2021). A new fuzzy BWM approach for evaluating and selecting a sustainable supplier in supply chain management. International Journal of Sustainable Development and World Ecology, 28(2), 125–142. https://doi.org/10.1080/13504509.2020.1793424
dc.relation.isbasedonAnitha, P., & Patil, M. M. (2019). RFM model for customer purchase behavior using K-Means algorithm. Journal of King Saud University – Computer and Information Sciences (In press). https://doi.org/10.1016/j.jksuci.2019.12.011
dc.relation.isbasedonArabameri, A., Rezaei, K., Cerda, A., Lombardo, L., & Rodrigo-Comino, J. (2019). GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Science of the Total Environment, 658, 160–177.
dc.relation.isbasedonhttps://doi.org/10.1016/j.scitotenv.2018.12.115
dc.relation.isbasedonBenoit, D. F., & Van den Poel, D. (2009). Benefits of quantile regression for the analysis of customer life time value in a contractual setting: An application in financial services. Expert Systems with Applications, 36, 10475–10484. https://doi.org/10.1016/j.eswa.2009.01.031
dc.relation.isbasedonBezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences, 10(2–3), 191–203. https://doi.org/10.1016/0098-3004(84)90020-7
dc.relation.isbasedonBharti, P. S. (2020). Two-step optimization of electric discharge machining using neural network based approach and TOPSIS. Journal of Interdisciplinary Mathematics, 23(1), 81–96. https://doi.org/10.1080/09720502.2020.1741222
dc.relation.isbasedonChang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. https://doi.org/10.1016/0377-2217(95)00300-2
dc.relation.isbasedonChang, H. H., & Tsay, S. F. (2004). Integrating of SOM and K-mean in data mining clustering: An empirical study of CRM and profitability evaluation. Journal of Information Management, 11, 161–203.
dc.relation.isbasedonChiang, L.-L. L., & Yang, C.-S. (2018). Does country-of-origin brand personality generate retail customer lifetime value? A Big Data analytics approach. Technological Forecasting and Social Change, 130, 177–187. https://doi.org/10.1016/j.techfore.2017.06.034
dc.relation.isbasedonCorne, D., Dhaenens, C., & Jourdan. L. (2012). Synergies between operations research and data mining: The emerging use of multi-objective approaches. European Journal of Operational Research, 221(3), 469–479. https://doi.org/10.1016/j.ejor.2012.03.039
dc.relation.isbasedonDe Marco, M., Fantozzi, P., Fornaro, C., Laura, L., & Miloso, A. (2021). Cognitive analytics management of the customer lifetime value: An artificial neural network approach. Journal of Enterprise Information Management, 34(2), 679–696. https://doi.org/10.1108/JEIM-01-2020-0029
dc.relation.isbasedonDunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57. https://doi.org/10.1080/01969727308546046
dc.relation.isbasedonEgemen, M. (2021). A framework for buyers’ house selection criteria vs. post-occupancy residential satisfaction levels in North Cyprus. International Journal of Strategic Property Management, 25(1), 50–64. https://doi.org/10.3846/ijspm.2020.13725
dc.relation.isbasedonGuerard, J. B., Xu, G., & Markowitz, H. (2021). A further analysis of robust regression modeling and data mining corrections testing in global stocks. Annals of Operations Research, 303(1), 175–195. https://doi.org/10.1007/s10479-020-03521-y
dc.relation.isbasedonGuo, J.-Q., Chiang, S.-H., Liu, M., Yang, C.-C., & Guo, K.-Y. (2020). Can machine learning algorithms associated with text mining from internet data improve housing price prediction performance? International Journal of Strategic Property Management, 24(5), 300–312. https://doi.org/10.3846/ijspm.2020.12742
dc.relation.isbasedonHughes, A. M. (1994). Strategic database marketing. Chicago, IL: Probus Publishing.
dc.relation.isbasedonJuan, Y.-K., Hsu, Y.-C., & Chang, Y.-P. (2021). Site selection assessment of vacant campus space transforming into daily care centers for the aged. International Journal of Strategic Property Management, 25(1), 34–49. https://doi.org/10.3846/ijspm.2020.13800
dc.relation.isbasedonKhajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3, 57–63. https://doi.org/10.1016/j.procs.2010.12.011
dc.relation.isbasedonKotler, P. (2003). Marketing for hospitality and tourism (5th ed). Chennai: Pearson Education India.
dc.relation.isbasedonLiao, H., Tang, M., Li, Z., & Lev, B. (2019). Bibliometric analysis for highly cited papers in operations research and management science from 2008 to 2017 based on essential science indicators. Omega, 88, 223–236. https://doi.org/10.1016/j.omega.2018.11.005
dc.relation.isbasedonLiao, H. C., Ren, R. X., Antucheviciene, J., Šaparauskas, J., & Al-Barakati, A. (2020). Sustainable construction supplier selection by a multiple criteria decision-making method with hesitant linguistic information. E&M Economics and Management, 23(4), 119–136. https://doi.org/10.15240/tul/001/2020-4-008
dc.relation.isbasedonLiu, D.-R., & Shih, Y.-Y. (2005). Integrating AHP and datamining for product recommendation based on customer lifetime value. Information & Management, 42(3), 387–400. https://doi.org/10.1016/j.im.2004.01.008
dc.relation.isbasedonLiou, J. J. H., Chang, M. H., Lo, H. W., & Hsu, M. H. (2021). Application of an MCDM model with data mining techniques for green supplier evaluation and selection. Applied Soft Computing, 109, 107534. https://doi.org/10.1016/j.asoc.2021.107534
dc.relation.isbasedonMahdiraji, H. A., Zavadskas, E. K., Kazeminia, A., & Abbasi Kamardi, A. (2019). Marketing strategies evaluation based on big data analysis: A CLUSTERING-MCDM approach. Economic Research – Ekonomska Istraživanja, 32(1), 2882–2898. https://doi.org/10.1080/1331677X.2019.1658534
dc.relation.isbasedonMalik, M. M., Abdallah, S., & Ala’raj, M. (2018). Data mining and predictive analytics applications for the delivery of healthcare services: a systematic literature review. Annals of Operations Research, 270(1), 287–312. https://doi.org/10.1007/s10479-016-2393-z
dc.relation.isbasedonMarques, F. C., Ferreira, F. A. F., Zopounidis, C., & Banaitis, A. (2020). A system dynamics-based approach to determinants of family business growth. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03524-9
dc.relation.isbasedonMeisel, S., & Mattfeld, D. (2010). Synergies of operations research and data mining. European Journal of Operational Research, 206(1), 1–10. https://doi.org/10.1016/j.ejor.2009.10.017
dc.relation.isbasedonMoktadir, M. A., Mahmud, Y., Banaitis, A., Sarder, T., & Khan, M. R. (2021). Key performance indicators for adopting sustainability practices in footwear supply chains. E&M Economics and Management, 24(1), 197–213. https://doi.org/10.15240/tul/001/2021-1-013
dc.relation.isbasedonMohandes, S. R., Sadeghi, H., Mahdiyar, A., Durdyev, S., Banaitis, A., Yahya, K., & Ismail, S. (2020). Assessing construction labours’ safety level: A fuzzy MCDM approach. Journal of Civil Engineering and Management, 26(2), 175–188. https://doi.org/10.3846/jcem.2020.11926
dc.relation.isbasedonMosaddegh, A., Albadvi, A., Sepehri, M. M., & Teimourpour, B. (2021). Dynamics of customer segments: A predictor of customer lifetime value. Expert Systems with Applications, 172, 114606. https://doi.org/10.1016/j.eswa.2021.114606
dc.relation.isbasedonMuduli, K., & Barve, A. (2015). Analysis of critical activities for GSCM implementation in mining supply chains in India using fuzzy analytical hierarchy process. International Journal of Business Excellence, 8(6), 767–797. https://doi.org/10.1504/IJBEX.2015.072309
dc.relation.isbasedonOlafsson, S., Li, X., & Wu, S. (2008). Operations research and data mining. European Journal of Operational Research, 187(3), 1429–1448. https://doi.org/10.1016/j.ejor.2006.09.023
dc.relation.isbasedonOzkaya, G., Timor, M., & Erdin, C. (2021). Science, Technology and Innovation Policy Indicators and Comparisons of Countries through a Hybrid Model of Data Mining and MCDM Methods. Sustainability, 13(2), 694. https://doi.org/10.3390/su13020694
dc.relation.isbasedonPérez-Martín, A., Pérez-Torregrosa, A., & Vaca, M. (2018). Big Data techniques to measure credit banking risk in home equity loans. Journal of Business Research, 89, 448–454. https://doi.org/10.1016/j.jbusres.2018.02.008
dc.relation.isbasedonPineda, P. J. G., Liou, J. J., Hsu, C. C., & Chuang, Y. C. (2018). An integrated MCDM model for improving airline operational and financial performance. Journal of Air Transport Management, 68, 103–117. https://doi.org/10.1016/j.jairtraman.2017.06.003
dc.relation.isbasedonRad, A., Naderi, B., & Soltani, M. (2011). Clustering and ranking university majors using data mining and AHP algorithms: A case study in Iran. Expert Systems with Applications, 38(1), 755–763. https://doi.org/10.1016/j.eswa.2010.07.029
dc.relation.isbasedonRahmadianti, R., Dhini, A., & Laoh, E. (2020, November). Estimating customer lifetime value using LRFM model in pharmaceutical and medical device distribution company. In Proceedings of the 2020 International Conference on ICT for Smart Society (ICISS) (pp. 1–5). Bandung, Indonesia. https://doi.org/10.1109/ICISS50791.2020.9307592
dc.relation.isbasedonRay, M., & Mangaraj, B. K. (2016). AHP Based Data Mining for customer segmentation based on customer lifetime value. International Journal of Data Mining Techniques and Applications, 5(1), 28–34. https://doi.org/10.20894/IJDMTA.102.005.001.007
dc.relation.isbasedonSafari, F., Safari, N., & Montazer, G. A. (2016). Customer lifetime value determination based on RFM model. Marketing Intelligence & Planning, 34(4), 446–461. https://doi.org/10.1108/MIP-03-2015-0060
dc.relation.isbasedonSeyed Hosseini, S. M., Maleki, A., & Gholamian, M. R. (2010). Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert Systems with Applications, 37(7), 5259–5264. https://doi.org/10.1016/j.eswa.2009.12.070
dc.relation.isbasedonShen, L., Muduli, K., & Barve, A. (2015). Developing a sustainable development framework in the context of mining industries: AHP approach. Resources Policy, 46(1), 15–26. https://doi.org/10.1016/j.resourpol.2013.10.006
dc.relation.isbasedonTian, M.-W., Liao, X.-Z., Wu, L.-X., Peng, L.-H., & Yan, S.-R. (2018). Multi-attribute decision making of target enterprises in mergers and acquisitions. Journal of Interdisciplinary Mathematics, 21(5), 1103–1108. https://doi.org/10.1080/09720502.2018.1493037
dc.relation.isbasedonTsai, H.-H. (2012). Global data mining: An empirical study of current trends, future forecasts and technology diffusions. Expert Systems with Applications, 39(9), 8172–8181. https://doi.org/10.1016/j.eswa.2012.01.150
dc.relation.isbasedonWailoni, X., Swain, S., Lafanama, S., & Muduli, K. (2022). Analytical approach for prioritizing waste management practices: Implications for sustainable development exercises in health care sector. International Journal of Social Ecology and Sustainable Development, 13(1), 43. https://doi.org/10.4018/IJSESD.289643
dc.relation.isbasedonWei, J.-T., Lin, S.-Y., Weng, C.-C., & Wu, H.-H. (2012). A case study of applying LRFM model in market segmentation of a children’s dental clinic. Expert Systems with Applications, 39(5), 5529–5533. https://doi.org/10.1016/j.eswa.2011.11.066
dc.relation.isbasedonWiesel, T., Skiera, B., & Villanueva, J. (2011). Customer Lifetime Value and Customer Equity Models Using Company-reported Summary Data. Journal of Interactive Marketing, 25(1), 20–22. https://doi.org/10.1016/j.intmar.2010.12.003
dc.relation.isbasedonWu, D., & Olson, D. L. (2006). A TOPSIS Data Mining Demonstration and Application to Credit Scoring. International Journal of Data Warehousing and Mining, 2(3), 16–26. https://doi.org/10.4018/jdwm.2006070102
dc.relation.isbasedonZare, H., & Emadi, S. (2020). Determination of Customer Satisfaction using Improved K-means algorithm. Soft Computing, 24(11), 16947–16965. https://doi.org/10.1007/s00500-020-04988-4
dc.relation.ispartofEkonomie a Managementcs
dc.relation.ispartofEconomics and Managementen
dc.relation.isrefereedtrue
dc.rightsCC BY-NC
dc.subjectdata miningen
dc.subjectfuzzy c-means clusteringen
dc.subjectfuzzy AHPen
dc.subjectcustomer segmentationen
dc.subjectfuzzy TOPSISen
dc.subjectcustomer lifetime value (CLV)en
dc.subjectmarketing strategiesen
dc.subject.classificationC65
dc.subject.classificationL81
dc.subject.classificationD12
dc.titleINTEGRATED APPROACH OF FUZZY MULTI-ATTRIBUTE DECISION MAKING AND DATA MINING FOR CUSTOMER SEGMENTATIONen
dc.typeArticleen
local.accessopen
local.citation.epage188
local.citation.spage174
local.facultyFaculty of Economics
local.fulltextyes
local.relation.abbreviationE+Mcs
local.relation.abbreviationE&Men
local.relation.issue4
local.relation.volume24
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EM_4_2021_11.pdf
Size:
982.44 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections