NONLINEAR ANALYSIS AND PREDICTION OF BITCOIN RETURN’S VOLATILITY

dc.contributor.authorYin, Tao
dc.contributor.authorWang, Yiming
dc.contributor.otherEkonomická fakultacs
dc.date.accessioned2022-06-07T07:48:08Z
dc.date.available2022-06-07T07:48:08Z
dc.description.abstractThis paper mainly studies the market nonlinearity and the prediction model based on the intrinsic generation mechanism (chaos) of Bitcoin’s daily return’s volatility from June 27, 2013 to November 7, 2019 with an econophysics perspective, so as to avoid the forecasting model misspecification. Firstly, this paper studies the multifractal and chaotic nonlinear characteristics of Bitcoin volatility by using multifractal detrended fluctuation analysis (MFDFA) and largest Lyapunov exponent (LLE) methods. Then, from the perspective of nonlinearity, the measured values of multifractal and chaos show that the volatility of Bitcoin has short-term predictability. The study of chaos and multifractal dynamics in nonlinear systems is very important in terms of their predictability. The chaos signals may have short-term predictability, while multifractals and self-similarity can increase the likelihood of accurately predicting future sequences of these signals. Finally, we constructed a number of chaotic artificial neural network models to forecast the Bitcoin return’s volatility avoiding the model misspecification. The results show that chaotic artificial neural network models have good prediction effect by comparing these models with the existing Artificial Neural Network (ANN) models. This is because the chaotic artificial neural network models can extract hidden patterns and accurately model time series from potential signals, while the benchmark ANN models are based on Gaussian kernel local approximation of non-stationary signals, so they cannot approach the global model with chaotic characteristics. At the same time, the multifractal parameters are further mined to obtain more market information to guide financial practice. These above findings matter for investors (especially for investors in quantitative trading) as well as effective supervision of financial institutions by government.en
dc.formattext
dc.identifier.doi10.15240/tul/001/2022-2-007
dc.identifier.eissn2336-5604
dc.identifier.issn1212-3609
dc.identifier.urihttps://dspace.tul.cz/handle/15240/164989
dc.language.isoen
dc.publisherTechnická Univerzita v Libercics
dc.publisherTechnical university of Liberec, Czech Republicen
dc.publisher.abbreviationTUL
dc.relation.isbasedonAdrangi, B., & Chatrath, C. (2001). Chaos in oil prices? Evidence from futures market. Energy Economics, 23(4), 405–425. https://doi.org/10.1016/S0140-9883(00)00079-7
dc.relation.isbasedonAjaz, T., & Kumar, A. (2018). Herding in cryptocurrency markets. Annals of Financial Economics, 13(02), 1850006. https://doi.org/10.1142/S2010495218500069
dc.relation.isbasedonBariviera, A., Basgall, M., Hasperué, W., & Naiouf, M. (2017). Some stylized facts of the Bitcoin market. Physica A: Statistical Mechanics and its Applications, 484, 82–90. https://doi.org/10.1016/j.physa.2017.04.159
dc.relation.isbasedonBouoiyour, J., Selmi, R., & Wohar, M. (2018). Are Islamic stock markets efficient? A multifractal detrended fluctuation analysis. Finance Research Letters, 26, 100–105. https://doi.org/10.1016/j.frl.2017.12.008
dc.relation.isbasedonBouoiyour, J., Selmi, R., & Tiwari, A. K. (2015). Is Bitcoin Business Income or Speculative Foolery? New Ideas through an Improved Frequency Domain Analysis. Annals of Financial Economics, 10(1), 1550002. https://doi.org/10.1142/S2010495215500025
dc.relation.isbasedonBouri, E., Molnar, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters, 20, 192–198. https://doi.org/10.1016/j.frl.2016.09.025
dc.relation.isbasedonBrière, M., Oosterlinck, K., & Szafarz, A. (2015). Virtual currency, tangible return: Portfolio diversification with Bitcoin. Journal of Asset Management, 16(6), 365–373. https://doi.org/10.1057/jam.2015.5
dc.relation.isbasedonCao, G., Cao, J., & Xu, L. (2013). Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA. Physica A: Statistical Mechanics and its Applications, 392(4), 797–807. https://doi.org/10.1016/j.physa.2012.10.042
dc.relation.isbasedonCarbone, A., Castelli, G., & Stanley, H. (2004). Time-dependent Hurst exponent in financial time series. Physica A: Statistical Mechanics and its Applications, 344(1–2), 267–271. https://doi.org/10.1016/j.physa.2004.06.130
dc.relation.isbasedonDavison, A., & Hinkley, D. (1997). Bootstrap Methods and their Application. Cambridge University Press. https://doi.org/10.1017/CBO9780511802843
dc.relation.isbasedonDonier, J., & Bonart, J. (2015). A Million Metaorder Analysis of Market Impact on the Bitcoin. Market Microstructure and Liquidity, 1(02), 1550008. https://doi.org/10.1142/S2382626615500082
dc.relation.isbasedonDwyer, G. (2015). The economics of Bitcoin and similar private digital currencies. Journal of Financial Stability, 17, 81–91. https://doi.org/10.1016/j.jfs.2014.11.006
dc.relation.isbasedonDyhrberg, A., Foley, S., & Svec, J. (2018). How investible is Bitcoin? Analyzing the liquidity and transaction costs of Bitcoin markets. Economics Letters, 171, 140–143. https://doi.org/10.1016/j.econlet.2018.07.032
dc.relation.isbasedonFraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual Information. Physical Review A, 33(2), 1134. https://doi.org/10.1103/PhysRevA.33.1134
dc.relation.isbasedonGao, J., & Zheng, Z. (1993). Local exponential divergence plot and optimal embedding of a chaotic time series. Physics Letters A, 181(2), 153–158. https://doi.org/10.1016/0375-9601(93)90913-K
dc.relation.isbasedonHung, J.-C., Liu, H.-C., & Yang, J. J. (2020). Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators. The North American Journal of Economics and Finance, 52, 101165. https://doi.org/10.1016/j.najef.2020.101165
dc.relation.isbasedonIhlen, E. A. F. (2012). Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers in Physiology, 3, 141. https://doi.org/10.3389/fphys.2012.00141
dc.relation.isbasedonKantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1–4), 87–114. https://doi.org/10.1016/S0378-4371(02)01383-3
dc.relation.isbasedonKatsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3–6. https://doi.org/10.1016/j.econlet.2017.06.023
dc.relation.isbasedonKim, T. (2017). On the transaction cost of Bitcoin. Finance Research Letters, 23, 300–305. https://doi.org/10.1016/j.frl.2017.07.014
dc.relation.isbasedonKlein, T., Thu, H. P., & Walther, T. (2018). Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance. International Review of Financial Analysis, 59, 105–116. https://doi.org/10.1016/j.irfa.2018.07.010
dc.relation.isbasedonKoutmos, D. (2018). Liquidity uncertainty and Bitcoin’s market microstructure. Economics Letters, 172, 97–101. https://doi.org/10.1016/j.econlet.2018.08.041
dc.relation.isbasedonLahmiri, S. (2017). On fractality and chaos in Moroccan family business stock returns and volatility. Physica A: Statistical Mechanics and Its Applications, 473, 29–39. https://doi.org/10.1016/j.physa.2017.01.033
dc.relation.isbasedonLahmiri, S., Bekiros, S., & Salvi, A. (2018). Long-range memory, distributional variation and randomness of bitcoin volatility. Chaos Solitons & Fractals, 107, 43–48. https://doi.org/10.1016/j.chaos.2017.12.018
dc.relation.isbasedonLashermes, B., Abry, P., & Chainais, P. (2004). New insights into the estimation of scaling exponents. International Journal of Wavelets, Multiresolution and Information Processing, 02(04), 497–523. https://doi.org/10.1142/S0219691304000597
dc.relation.isbasedonLi, T., & Tourin, A. (2016). Optimal pairs trading with time-varying volatility. International Journal of Financial Engineering, 03(03), 1650023. https://doi.org/10.1142/S2424786316500237
dc.relation.isbasedonMartinez, L. B., Guercio, M. B., Bariviera, A. F., & Terceño, A. (2018). The impact of the financial crisis on the long-range memory of European corporate bond and stock markets. Empirica, 45(1), 1–15. https://doi.org/10.1007/s10663-016-9340-8
dc.relation.isbasedonMcCarthy, J., Pantalone, C., & Li, H. C. (2009). Investigating Long Memory in Yield Spreads. The Journal of Fixed Income, 19(1), 73–81. https://doi.org/10.3905/JFI.2009.19.1.073
dc.relation.isbasedonMoody, J., & Darken, C. J. (1989). Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation, 1(2), 281–294. https://doi.org/10.1162/neco.1989.1.2.281
dc.relation.isbasedonNadarajah, S., & Chu, J. (2017). On the inefficiency of bitcoin. Economics Letters, 150, 6–9. https://doi.org/10.1016/j.econlet.2016.10.033
dc.relation.isbasedonNakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf
dc.relation.isbasedonOsterrieder, J., & Lorenz, J. (2017). A Statistical Risk Assessment of Bitcoin and Its Extreme Tail Behavior. Annals of Financial Economics, 12(1), 1750003. https://doi.org/10.1142/S2010495217500038
dc.relation.isbasedonOzun, A., Hanias, M. P., & Curtis, P. G. (2010). A chaos analysis for Greek and Turkish equity markets. EuroMed Journal of Business, 5(1), 101–118. https://doi.org/10.1108/14502191011043189
dc.relation.isbasedonRizvi, S. A. R., Dewandaru, G., Bacha, O. I., & Masih, M. (2014). An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA. Physica A: Statistical Mechanics and its Applications, 407, 86–99. https://doi.org/10.1016/j.physa.2014.03.091
dc.relation.isbasedonRosenstein, M. T., Collins, J. J., & De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65(1–2), 117–34. https://doi.org/10.1016/0167-2789(93)90009-P
dc.relation.isbasedonRumelhart, D. E., & McCleland, J. L. (1986). Learning Internal Representations by Error Propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations (pp. 318–362). Cambridge, MA: MIT Press. Retrieved from https://ieeexplore.ieee.org/document/6302929
dc.relation.isbasedonSeo, Y., & Hwang, C. (2018). Predicting Bitcoin market Market Trend with Deep Learning Models. Quantitative Bio-Science, 37(1), 65–71. https://doi.org/10.22283/qbs.2018.37.1.65
dc.relation.isbasedonSymitsi, E., & Chalvatzis, K. (2018). Return, volatility and shock spillovers of Bitcoin with energy and technology companies. Economics Letters, 170, 127–130. https://doi.org/10.1016/j.econlet.2018.06.012
dc.relation.isbasedonTasca, P., Hayes, A., & Liu, S. (2018). The Evolution of the Bitcoin Economy: Extracting and Analyzing the Network of Payment Relationships. Journal of Risk Finance, 19(2), 94–126. https://doi.org/10.1108/JRF-03-2017-0059
dc.relation.isbasedonTiwari, A. K., Kumar, S., & Pathak, R. (2019). Modelling the dynamics of Bitcoin and Litecoin: GARCH versus stochastic volatility models. Applied Economics, 51(37), 4073–4082. https://doi.org/10.1080/00036846.2019.1588951
dc.relation.isbasedonUddin, G. S., Hernandez, J. A., Shahzad, S. J. H., & Yoon, S.-M. (2018). Time-varying evidence of efficiency, decoupling, and diversification of conventional and Islamic stocks. International Review of Financial Analysis, 56, 167–180. https://doi.org/10.1016/j.irfa.2018.01.008
dc.relation.isbasedonUrquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80–82. https://doi.org/10.1016/j.econlet.2016.09.019
dc.relation.isbasedonUrquhart, A., & Zhang, H. (2019). Is Bitcoin a Hedge or Safe-Haven for Currencies? An Intraday Analysis. International Review of Financial Analysis, 63, 49–57. https://doi.org/10.2139/ssrn.3114108
dc.relation.isbasedonWolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9
dc.relation.isbasedonYang, S.-S., & Tseng, C.-S. (1996). An orthogonal neural network for function approximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(5), 779–785. https://doi.org/10.1109/3477.537319
dc.relation.isbasedonYi, S., Xu, Z., & Wang, G.-J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60, 98–114. https://doi.org/10.1016/j.irfa.2018.08.012
dc.relation.isbasedonYin, T., & Wang, Y. (2019). Predicting the Price of WTI Crude Oil Using ANN and Chaos. Sustainability, 11(21), 5980. https://doi.org/10.3390/su11215980
dc.relation.isbasedonZhang, Q.-Y., Pan, L., & Zi, X.-C. (2010). A Shared Congestion Detection Technique Based on Weighted First Order Local-Region Method. Journal of Shanghai Jiaotong University, 44(2), 286–287. https://doi.org/10.3724/SP.J.1187.2010.00953
dc.relation.isbasedonZhou, W.-X. (2009). The components of empirical multifractality in financial returns. Europhysics Letters, 88(2), 28004. https://doi.org/10.1209/0295-5075/88/28004
dc.relation.ispartofEkonomie a Managementcs
dc.relation.ispartofEconomics and Managementen
dc.relation.isrefereedtrue
dc.rightsCC BY-NC
dc.subjectnonlinearen
dc.subjectmultifractalen
dc.subjectchaosen
dc.subjectBitcoinen
dc.subjectpredictionen
dc.subject.classificationA10
dc.subject.classificationE44
dc.subject.classificationF37
dc.titleNONLINEAR ANALYSIS AND PREDICTION OF BITCOIN RETURN’S VOLATILITYen
dc.typeArticleen
local.accessopen
local.citation.epage117
local.citation.spage102
local.facultyFaculty of Economics
local.filenameEM_2_2022_7
local.fulltextyes
local.relation.abbreviationE+Mcs
local.relation.abbreviationE&Men
local.relation.issue2
local.relation.volume25
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EM_2_2022_07.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections