NONLINEAR ANALYSIS AND PREDICTION OF BITCOIN RETURN’S VOLATILITY
dc.contributor.author | Yin, Tao | |
dc.contributor.author | Wang, Yiming | |
dc.contributor.other | Ekonomická fakulta | cs |
dc.date.accessioned | 2022-06-07T07:48:08Z | |
dc.date.available | 2022-06-07T07:48:08Z | |
dc.description.abstract | This paper mainly studies the market nonlinearity and the prediction model based on the intrinsic generation mechanism (chaos) of Bitcoin’s daily return’s volatility from June 27, 2013 to November 7, 2019 with an econophysics perspective, so as to avoid the forecasting model misspecification. Firstly, this paper studies the multifractal and chaotic nonlinear characteristics of Bitcoin volatility by using multifractal detrended fluctuation analysis (MFDFA) and largest Lyapunov exponent (LLE) methods. Then, from the perspective of nonlinearity, the measured values of multifractal and chaos show that the volatility of Bitcoin has short-term predictability. The study of chaos and multifractal dynamics in nonlinear systems is very important in terms of their predictability. The chaos signals may have short-term predictability, while multifractals and self-similarity can increase the likelihood of accurately predicting future sequences of these signals. Finally, we constructed a number of chaotic artificial neural network models to forecast the Bitcoin return’s volatility avoiding the model misspecification. The results show that chaotic artificial neural network models have good prediction effect by comparing these models with the existing Artificial Neural Network (ANN) models. This is because the chaotic artificial neural network models can extract hidden patterns and accurately model time series from potential signals, while the benchmark ANN models are based on Gaussian kernel local approximation of non-stationary signals, so they cannot approach the global model with chaotic characteristics. At the same time, the multifractal parameters are further mined to obtain more market information to guide financial practice. These above findings matter for investors (especially for investors in quantitative trading) as well as effective supervision of financial institutions by government. | en |
dc.format | text | |
dc.identifier.doi | 10.15240/tul/001/2022-2-007 | |
dc.identifier.eissn | 2336-5604 | |
dc.identifier.issn | 1212-3609 | |
dc.identifier.uri | https://dspace.tul.cz/handle/15240/164989 | |
dc.language.iso | en | |
dc.publisher | Technická Univerzita v Liberci | cs |
dc.publisher | Technical university of Liberec, Czech Republic | en |
dc.publisher.abbreviation | TUL | |
dc.relation.isbasedon | Adrangi, B., & Chatrath, C. (2001). Chaos in oil prices? Evidence from futures market. Energy Economics, 23(4), 405–425. https://doi.org/10.1016/S0140-9883(00)00079-7 | |
dc.relation.isbasedon | Ajaz, T., & Kumar, A. (2018). Herding in cryptocurrency markets. Annals of Financial Economics, 13(02), 1850006. https://doi.org/10.1142/S2010495218500069 | |
dc.relation.isbasedon | Bariviera, A., Basgall, M., Hasperué, W., & Naiouf, M. (2017). Some stylized facts of the Bitcoin market. Physica A: Statistical Mechanics and its Applications, 484, 82–90. https://doi.org/10.1016/j.physa.2017.04.159 | |
dc.relation.isbasedon | Bouoiyour, J., Selmi, R., & Wohar, M. (2018). Are Islamic stock markets efficient? A multifractal detrended fluctuation analysis. Finance Research Letters, 26, 100–105. https://doi.org/10.1016/j.frl.2017.12.008 | |
dc.relation.isbasedon | Bouoiyour, J., Selmi, R., & Tiwari, A. K. (2015). Is Bitcoin Business Income or Speculative Foolery? New Ideas through an Improved Frequency Domain Analysis. Annals of Financial Economics, 10(1), 1550002. https://doi.org/10.1142/S2010495215500025 | |
dc.relation.isbasedon | Bouri, E., Molnar, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters, 20, 192–198. https://doi.org/10.1016/j.frl.2016.09.025 | |
dc.relation.isbasedon | Brière, M., Oosterlinck, K., & Szafarz, A. (2015). Virtual currency, tangible return: Portfolio diversification with Bitcoin. Journal of Asset Management, 16(6), 365–373. https://doi.org/10.1057/jam.2015.5 | |
dc.relation.isbasedon | Cao, G., Cao, J., & Xu, L. (2013). Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA. Physica A: Statistical Mechanics and its Applications, 392(4), 797–807. https://doi.org/10.1016/j.physa.2012.10.042 | |
dc.relation.isbasedon | Carbone, A., Castelli, G., & Stanley, H. (2004). Time-dependent Hurst exponent in financial time series. Physica A: Statistical Mechanics and its Applications, 344(1–2), 267–271. https://doi.org/10.1016/j.physa.2004.06.130 | |
dc.relation.isbasedon | Davison, A., & Hinkley, D. (1997). Bootstrap Methods and their Application. Cambridge University Press. https://doi.org/10.1017/CBO9780511802843 | |
dc.relation.isbasedon | Donier, J., & Bonart, J. (2015). A Million Metaorder Analysis of Market Impact on the Bitcoin. Market Microstructure and Liquidity, 1(02), 1550008. https://doi.org/10.1142/S2382626615500082 | |
dc.relation.isbasedon | Dwyer, G. (2015). The economics of Bitcoin and similar private digital currencies. Journal of Financial Stability, 17, 81–91. https://doi.org/10.1016/j.jfs.2014.11.006 | |
dc.relation.isbasedon | Dyhrberg, A., Foley, S., & Svec, J. (2018). How investible is Bitcoin? Analyzing the liquidity and transaction costs of Bitcoin markets. Economics Letters, 171, 140–143. https://doi.org/10.1016/j.econlet.2018.07.032 | |
dc.relation.isbasedon | Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual Information. Physical Review A, 33(2), 1134. https://doi.org/10.1103/PhysRevA.33.1134 | |
dc.relation.isbasedon | Gao, J., & Zheng, Z. (1993). Local exponential divergence plot and optimal embedding of a chaotic time series. Physics Letters A, 181(2), 153–158. https://doi.org/10.1016/0375-9601(93)90913-K | |
dc.relation.isbasedon | Hung, J.-C., Liu, H.-C., & Yang, J. J. (2020). Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators. The North American Journal of Economics and Finance, 52, 101165. https://doi.org/10.1016/j.najef.2020.101165 | |
dc.relation.isbasedon | Ihlen, E. A. F. (2012). Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers in Physiology, 3, 141. https://doi.org/10.3389/fphys.2012.00141 | |
dc.relation.isbasedon | Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1–4), 87–114. https://doi.org/10.1016/S0378-4371(02)01383-3 | |
dc.relation.isbasedon | Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3–6. https://doi.org/10.1016/j.econlet.2017.06.023 | |
dc.relation.isbasedon | Kim, T. (2017). On the transaction cost of Bitcoin. Finance Research Letters, 23, 300–305. https://doi.org/10.1016/j.frl.2017.07.014 | |
dc.relation.isbasedon | Klein, T., Thu, H. P., & Walther, T. (2018). Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance. International Review of Financial Analysis, 59, 105–116. https://doi.org/10.1016/j.irfa.2018.07.010 | |
dc.relation.isbasedon | Koutmos, D. (2018). Liquidity uncertainty and Bitcoin’s market microstructure. Economics Letters, 172, 97–101. https://doi.org/10.1016/j.econlet.2018.08.041 | |
dc.relation.isbasedon | Lahmiri, S. (2017). On fractality and chaos in Moroccan family business stock returns and volatility. Physica A: Statistical Mechanics and Its Applications, 473, 29–39. https://doi.org/10.1016/j.physa.2017.01.033 | |
dc.relation.isbasedon | Lahmiri, S., Bekiros, S., & Salvi, A. (2018). Long-range memory, distributional variation and randomness of bitcoin volatility. Chaos Solitons & Fractals, 107, 43–48. https://doi.org/10.1016/j.chaos.2017.12.018 | |
dc.relation.isbasedon | Lashermes, B., Abry, P., & Chainais, P. (2004). New insights into the estimation of scaling exponents. International Journal of Wavelets, Multiresolution and Information Processing, 02(04), 497–523. https://doi.org/10.1142/S0219691304000597 | |
dc.relation.isbasedon | Li, T., & Tourin, A. (2016). Optimal pairs trading with time-varying volatility. International Journal of Financial Engineering, 03(03), 1650023. https://doi.org/10.1142/S2424786316500237 | |
dc.relation.isbasedon | Martinez, L. B., Guercio, M. B., Bariviera, A. F., & Terceño, A. (2018). The impact of the financial crisis on the long-range memory of European corporate bond and stock markets. Empirica, 45(1), 1–15. https://doi.org/10.1007/s10663-016-9340-8 | |
dc.relation.isbasedon | McCarthy, J., Pantalone, C., & Li, H. C. (2009). Investigating Long Memory in Yield Spreads. The Journal of Fixed Income, 19(1), 73–81. https://doi.org/10.3905/JFI.2009.19.1.073 | |
dc.relation.isbasedon | Moody, J., & Darken, C. J. (1989). Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation, 1(2), 281–294. https://doi.org/10.1162/neco.1989.1.2.281 | |
dc.relation.isbasedon | Nadarajah, S., & Chu, J. (2017). On the inefficiency of bitcoin. Economics Letters, 150, 6–9. https://doi.org/10.1016/j.econlet.2016.10.033 | |
dc.relation.isbasedon | Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf | |
dc.relation.isbasedon | Osterrieder, J., & Lorenz, J. (2017). A Statistical Risk Assessment of Bitcoin and Its Extreme Tail Behavior. Annals of Financial Economics, 12(1), 1750003. https://doi.org/10.1142/S2010495217500038 | |
dc.relation.isbasedon | Ozun, A., Hanias, M. P., & Curtis, P. G. (2010). A chaos analysis for Greek and Turkish equity markets. EuroMed Journal of Business, 5(1), 101–118. https://doi.org/10.1108/14502191011043189 | |
dc.relation.isbasedon | Rizvi, S. A. R., Dewandaru, G., Bacha, O. I., & Masih, M. (2014). An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA. Physica A: Statistical Mechanics and its Applications, 407, 86–99. https://doi.org/10.1016/j.physa.2014.03.091 | |
dc.relation.isbasedon | Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65(1–2), 117–34. https://doi.org/10.1016/0167-2789(93)90009-P | |
dc.relation.isbasedon | Rumelhart, D. E., & McCleland, J. L. (1986). Learning Internal Representations by Error Propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations (pp. 318–362). Cambridge, MA: MIT Press. Retrieved from https://ieeexplore.ieee.org/document/6302929 | |
dc.relation.isbasedon | Seo, Y., & Hwang, C. (2018). Predicting Bitcoin market Market Trend with Deep Learning Models. Quantitative Bio-Science, 37(1), 65–71. https://doi.org/10.22283/qbs.2018.37.1.65 | |
dc.relation.isbasedon | Symitsi, E., & Chalvatzis, K. (2018). Return, volatility and shock spillovers of Bitcoin with energy and technology companies. Economics Letters, 170, 127–130. https://doi.org/10.1016/j.econlet.2018.06.012 | |
dc.relation.isbasedon | Tasca, P., Hayes, A., & Liu, S. (2018). The Evolution of the Bitcoin Economy: Extracting and Analyzing the Network of Payment Relationships. Journal of Risk Finance, 19(2), 94–126. https://doi.org/10.1108/JRF-03-2017-0059 | |
dc.relation.isbasedon | Tiwari, A. K., Kumar, S., & Pathak, R. (2019). Modelling the dynamics of Bitcoin and Litecoin: GARCH versus stochastic volatility models. Applied Economics, 51(37), 4073–4082. https://doi.org/10.1080/00036846.2019.1588951 | |
dc.relation.isbasedon | Uddin, G. S., Hernandez, J. A., Shahzad, S. J. H., & Yoon, S.-M. (2018). Time-varying evidence of efficiency, decoupling, and diversification of conventional and Islamic stocks. International Review of Financial Analysis, 56, 167–180. https://doi.org/10.1016/j.irfa.2018.01.008 | |
dc.relation.isbasedon | Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80–82. https://doi.org/10.1016/j.econlet.2016.09.019 | |
dc.relation.isbasedon | Urquhart, A., & Zhang, H. (2019). Is Bitcoin a Hedge or Safe-Haven for Currencies? An Intraday Analysis. International Review of Financial Analysis, 63, 49–57. https://doi.org/10.2139/ssrn.3114108 | |
dc.relation.isbasedon | Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9 | |
dc.relation.isbasedon | Yang, S.-S., & Tseng, C.-S. (1996). An orthogonal neural network for function approximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(5), 779–785. https://doi.org/10.1109/3477.537319 | |
dc.relation.isbasedon | Yi, S., Xu, Z., & Wang, G.-J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60, 98–114. https://doi.org/10.1016/j.irfa.2018.08.012 | |
dc.relation.isbasedon | Yin, T., & Wang, Y. (2019). Predicting the Price of WTI Crude Oil Using ANN and Chaos. Sustainability, 11(21), 5980. https://doi.org/10.3390/su11215980 | |
dc.relation.isbasedon | Zhang, Q.-Y., Pan, L., & Zi, X.-C. (2010). A Shared Congestion Detection Technique Based on Weighted First Order Local-Region Method. Journal of Shanghai Jiaotong University, 44(2), 286–287. https://doi.org/10.3724/SP.J.1187.2010.00953 | |
dc.relation.isbasedon | Zhou, W.-X. (2009). The components of empirical multifractality in financial returns. Europhysics Letters, 88(2), 28004. https://doi.org/10.1209/0295-5075/88/28004 | |
dc.relation.ispartof | Ekonomie a Management | cs |
dc.relation.ispartof | Economics and Management | en |
dc.relation.isrefereed | true | |
dc.rights | CC BY-NC | |
dc.subject | nonlinear | en |
dc.subject | multifractal | en |
dc.subject | chaos | en |
dc.subject | Bitcoin | en |
dc.subject | prediction | en |
dc.subject.classification | A10 | |
dc.subject.classification | E44 | |
dc.subject.classification | F37 | |
dc.title | NONLINEAR ANALYSIS AND PREDICTION OF BITCOIN RETURN’S VOLATILITY | en |
dc.type | Article | en |
local.access | open | |
local.citation.epage | 117 | |
local.citation.spage | 102 | |
local.faculty | Faculty of Economics | |
local.filename | EM_2_2022_7 | |
local.fulltext | yes | |
local.relation.abbreviation | E+M | cs |
local.relation.abbreviation | E&M | en |
local.relation.issue | 2 | |
local.relation.volume | 25 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- EM_2_2022_07.pdf
- Size:
- 1.22 MB
- Format:
- Adobe Portable Document Format
- Description:
- článek