INFLUENCE OF MICROENCAPSULATION PARAMETERS ON THE SIZE AND MORPHOLOGY OF MICROCAPSULES BY ECO-FRIENDLY SOLVENT EVAPORATION METHOD ORIENTED TO MEDICAL TEXTILES

dc.contributor.authorTHUY DAO THI CHINH
dc.contributor.authorSINTES-ZYDOWICZ NATHALIE
dc.contributor.authorHUONG CHU DIEU
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2023-02-21T09:05:43Z
dc.date.available2023-02-21T09:05:43Z
dc.description.abstractApplication of microcapsules in medical textile has been studied and commercially developed widely in recent years. The aim of this work was to propose an eco-friendly microencapsulation by solvent evaporation method that can contribute to the manufacture of medical textile products using microcapsules. Quillaja saponin was used as bio-sourced surfactant and ethyl acetate was used as the less toxic, non-halogenated organic solvent. The influences of saponin concentration, stirring speed during emulsification step and the volume of ethyl acetate used to saturate the aqueous phase before emulsification on the microcapsule size and morphology were investigated. The results showed that eudragit microcapsules of ibuprofen with diameter in range from 17 to 34 µm, which were suitable for medical textile applications, were successfully elaborated. The saponin concentration varied from 0.025 to 0.1 wt%. The stirring speed was changed from 700 to 600 rpm. The volume of ethyl acetate used in saturation step was 0, 8 and 12 ml. In the scope of investigation, the saponin concentration and the volume of ethyl acetate used in saturation step did affect the microcapsule size and morphology while the stirring speed did not. The saturation step really helped to reduce the formation of irregular microparticles and to narrow the size distribution, but the microcapsules became more porous, weaker and were deformed significantly by drying in the fabric treatment process.cs
dc.formattext
dc.format.extent11 stran
dc.identifier.doi10.15240/tul/008/2022-4-003
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/167069
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonDubey R.: Microencapsulation technology and applications, Defence Science Journal 59(1), 2009, pp. 82-95. https://doi.org/10.14429/dsj.59.1489
dc.relation.isbasedonJyothi N. V. N, Prasanna P. M., Sakarkar S. N., et al.: Microencapsulation techniques, factors influencing encapsulation efficiency, Journal of Microencapsulation 27(3), 2010, pp. 187–197. http://doi.org/10.3109/02652040903131301
dc.relation.isbasedonKaragonlu S., Basal G., Özyildiz F., et al.: Preparation of thyme oil loaded microcapsules for textile applications, International Journal of New Technology and Research 4(3), 2018, pp. 01-08.
dc.relation.isbasedonFiedler J. O., Carmona O. G, Carmona G. C, et al.: Application of Aloe vera microcapsules in cotton nonwovens to obtain biofunctional textiles, The Journal of The Textile Institute 111(1), 2020, pp. 68-74. https://doi.org/10.1080/00405000.2019.1625607
dc.relation.isbasedonZhao H., Fei X., Cao L., et al.: Relation between the particle size and release characteristics of aromatic melamine microcapsules in functional textile applications, RSC Advances, 9(3), 2019, pp. 25225–25231. https://doi.org/10.1039/C9RA05196A
dc.relation.isbasedonBeşen B. S, Balcı O., Güneşoğlu C., et al.: Obtaining medical textiles including microcapsules of the ozonated vegetable oils, Fibers and Polymers, 18(6), 2017, pp. 1079-1090. https://doi.org/10.1007/s12221-017-1212-8
dc.relation.isbasedonBoh Podgornik B., Šandrić S., Kert M.: Microencapsulation for functional textile coatings with emphasis on biodegradability - A systematic review, Coatings 11(11), 2021, pp. 1371. https://doi.org/10.3390/coatings11111371
dc.relation.isbasedonHsieh W. C., Chang C. P, Gao Y. L.: Controlled release properties of Chitosan encapsulated volatile Citronella Oil microcapsules by thermal treatments, Colloids and Surfaces B: Biointerfaces, 53(2), 2006, pp. 209-214. https://doi.org/10.1016/j.colsurfb.2006.09.008
dc.relation.isbasedonChu D. H, Vu. T. H. K, Sintes-Zydowicz N.: Determination of size of Ibuprofen microcapsule using for textile application and research influence of stirring speed during microencapsulation on their dimension, Journal of Science and Technology Technical Universities, 102, 2014, pp. 144- 148.
dc.relation.isbasedonLi M., Rouaud O., Poncelet D.: Microencapsulation by solvent evaporation: State of the art for process engineering approaches, International Journal of Pharmaceutics, 363(1), 2008, pp. 26-39. https://doi.org/10.1016/j.ijpharm.2008.07.018
dc.relation.isbasedonCarr E. J., Pontrelli G.: Drug delivery from microcapsules: How can we estimate the release time?, Mathematical Biosciences, 315, 108216, 2019. https://doi.org/10.1016/j.mbs.2019.108216
dc.relation.isbasedonYang Z., Zeng Z., Xiao Z. Ji H.: Preparation and controllable release of chitosan/vanillin microcapsules and their application to cotton fabric, Flavour and Fragrance Journal 29(2), 2014, pp. 114-120. https://doi.org/10.1002/ffj.3186
dc.relation.isbasedonMonllor P., Sánchez L., Cases F., et al.: Thermal behavior of microencapsulated fragrances on cotton fabrics, Textile Research Journal, 79(4), 2009, pp. 365-380. https://doi.org/10.1177/0040517508097520
dc.relation.isbasedonAzizi N, Chevalier Y., Majdoub M.: Isosorbide-based microcapsules for cosmeto-textiles, Industrial Crops and Products, 52, 2014, pp. 150-157. https://doi.org/10.1016/j.indcrop.2013.10.027
dc.relation.isbasedonValot P., Baba M., Nedelec J-M., et al.: Effects of process parameters on the properties of biocompatible ibuprofenloaded microcapsules, International journal of pharmaceutics, 369 (1-2), 2009, pp. 53-63. https://doi.org/10.1016/j.ijpharm.2008.10.037
dc.relation.isbasedonUrbaniak T., Musiał W.: Influence of solvent evaporation technique parameters on diameter of submicron lamivudinepoly-ε-caprolactone conjugate particles, Nanomaterials, 9(9), 2019, pp. 1240. http://doi.org/10.3390/nano9091240
dc.relation.isbasedonSah H.: Microencapsulation techniques using ethyl acetate as a dispersed solvent: effects of its extraction rate on the characteristics of PLGA microspheres, Journal of Controlled Release, 47(3), 1997, pp. 233-245. https://doi.org/10.1016/S0168-3659(97)01647-7
dc.relation.isbasedonMirabedini S. M., Dutil I., Farnood R. R.: Preparation and characterization of ethyl cellulose-based core–shell microcapsules containing plant oils, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 394, 2012, pp. 74-84. https://doi.org/10.1016/j.colsurfa.2011.11.028
dc.relation.isbasedonMeng F. T., Ma G. H., Qiu W., et al.: W/O/W double emulsion technique using ethyl acetate as organic solvent: effects of its diffusion rate on the characteristics of microparticles, Journal of Controlled Release, 91(3), 2003, pp. 407-416. http://doi.org/10.1016/s0168-3659(03)00273-6
dc.relation.isbasedonKim H. K., Park T. G.: Microencapsulation of dissociable human growth hormone aggregates within poly(D,L-lactic-coglycolic acid) microparticles for sustained release, International journal of pharmaceutics, 229(1-2), 2001, pp. 107-116. http://doi.org/10.1016/s0378-5173(01)00852-3
dc.relation.isbasedonChung C., Sher A. , Rousset P., et al.: Formulation of food emulsions using natural emulsifiers: Utilization of quillaja saponin and soy lecithin to fabricate liquid coffee whiteners, Journal of Food Engineering, 209, 2017, pp. 1-11. https://doi.org/10.1016/j.jfoodeng.2017.04.011
dc.relation.isbasedonRai S., Acharya-Siwakoti E., Kafle A., et al.: Plant-derived saponins: A review of their surfactant properties and applications, Sci 3(4):44, 2021. https://doi.org/10.3390/sci3040044
dc.relation.isbasedonSchreiner T. B, Dias M. M., Barreiro M. F., et al.: Saponins as natural emulsifiers for nanoemulsions, Journal of Agricultural and Food Chemistry, 70(22), 2022, pp. 6573-6590. https://doi.org/10.1021/acs.jafc.1c07893
dc.relation.isbasedonLiao Y., Li Z., Qing Z., et al.: Saponin surfactants used in drug delivery systems: A new application for natural medicine components, International journal of pharmaceutics, 603, 2021, pp. 120709. https://doi.org/10.1016/j.ijpharm.2021.120709
dc.relation.isbasedonWojciechowski K.: Surface activity of saponin from Quillaja bark at the air/water and oil/water interfaces, Colloids and surfaces. B, Biointerfaces, 108, 2013, pp. 95-102. https://doi.org/10.1016/j.colsurfb.2013.02.008
dc.relation.isbasedonYang Y., Leser M. E., Sher A. A., et al.: Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®), Food Hydrocolloids, 30(2), 2013, pp. 589-596. https://doi.org/10.1016/j.foodhyd.2012.08.008
dc.relation.isbasedonYang Y., McClements D. J.: Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant, Food Hydrocolloids, 30(2), 2013, pp. 712-720. https://doi.org/10.1016/j.foodhyd.2012.09.003
dc.relation.isbasedonMitra S., Dungan S. R.: Micellar properties of quillaja Saponin. 1. Effects of Temperature, Salt, and pH on Solution Properties, Journal of Agricultural and Food Chemistry, 45(5), 1997, pp. 1587-1595. https://doi.org/10.1021/jf960349z
dc.relation.isbasedonChung T. W., Huang Y. Y., Liu Y. Z.: Effects of the rate of solvent evaporation on the characteristics of drug loaded PLLA and PDLLA microspheres, International Journal of Pharmaceutics, 212(2), 2001, pp. 161-169. https://doi.org/10.1016/S0378-5173(00)00574-3
dc.relation.isbasedonIzumikawa S., Yoshioka S., Aso Y.: Preparation of poly(llactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate, Journal of Controlled Release, 15(2), 1991, pp. 133-140. https://doi.org/10.1016/0168-3659(91)90071-K
dc.relation.ispartofFibres and Textiles
dc.subjectMedical textilecs
dc.subjectMicrocapsulecs
dc.subjectSolvent evaporation methodcs
dc.subjectQuillaja saponincs
dc.subjectEthyl acetatecs
dc.titleINFLUENCE OF MICROENCAPSULATION PARAMETERS ON THE SIZE AND MORPHOLOGY OF MICROCAPSULES BY ECO-FRIENDLY SOLVENT EVAPORATION METHOD ORIENTED TO MEDICAL TEXTILESen
dc.typeArticleen
local.accessopen access
local.citation.epage28
local.citation.spage18
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue4
local.relation.volume29
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2022_4_3.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections