COLOR PERCEPTION ESTIMATIONS OF METAMERIC PAIRS UNDER DIFFERENT ILLUMINANCE LEVELS

dc.contributor.authorMukthy, Azmary Akter
dc.contributor.authorVik, Michal
dc.contributor.authorViková, Martina
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2022-03-25T09:02:26Z
dc.date.available2022-03-25T09:02:26Z
dc.description.abstractLEDs or light emitting diodes of the lighting class dominate both the indoor and outdoor lighting industries today due to their accuracy and consumer-friendly color temperature. In the context of color science, it is necessary to analyze both the spectral power distribution of lighting and the human characteristics of color perception under these lights. In this article, we provide estimates of the appearance of eleven metameric pairs under LEDs with four correlated color temperatures and six illuminance levels, using color difference formulas based on the CIELAB, CAM02-UCS, and CAM16-UCS models to verify our estimates. We followed ASTM D4086 standard visual methods for detecting metamerism and for estimating the magnitude of a metameric color difference. Our investigations found that color appearance models are more reliable than CIELAB in evaluating color difference under various LED conditions. CAM16-UCS more accurately predicted the color difference estimates between all three formulas. Our comparative study confirms that the variation in the estimates with the CCT and illuminance levels of the LED sources depends on the color appearance model used. The results also showed that in order to determine the color difference of metameric pairs, optimal conditions regarding the colorimetric properties of the samples and the variability of the observer should be considered separately. We noticed an increasing correlation trend with increasing illuminance. However, there was no such increase or decrease trend in CCTs. The trend of the STRESS change in the color appearance models showed the influence of the chromatic adaptation, but the establishment of adaptation patterns is far beyond the scope of this work. Although our research has had limitations on correlated color temperature and illuminance, we believe that it can be beneficial for the lighting application to ensure correct lighting decisions when assessing the color differences of metameric pairs.cs
dc.formattext
dc.format.extent10 stran
dc.identifier.doi10.15240/tul/008/2022-1-005
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/163508
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonNEMA, 2021, https://www.nema.org/pages/default.aspx
dc.relation.isbasedonJudd D.B., MacAdam D.L., Wyszecki G., Budde H.W., Condit H.R., Henderson S.T., Simonds J.L.: Spectral distribution of typical daylight as a function of correlated color temperature, Journal of the optical society of America A 54(8), 1964, pp.1031-1040, https://doi.org/10.1364/JOSA.54.001031
dc.relation.isbasedonSimonds J.L.: Application of characteristic vector analysis to photographic and optical response data, Journal of the optical society of America A 53(8), 1963, pp. 968-971, https://doi.org/10.1364/JOSA.53.000968
dc.relation.isbasedonCIE publication No.15.4-2018. Colorimetry, Commission Intermationale de I’Eclairage, Vienna
dc.relation.isbasedonPinto P.D., Felgueiras P.E.R., Linhares J.M.M., Nascimento S.M.C.: Chromatic effects of metamers of D65 on art paintings, Ophthalmic Physiological Optics 30(5), 2010, pp. 632-637, https://doi.org/10.1111/j.1475-1313.2010.00726.x
dc.relation.isbasedonLinhares J.M.M., Felgueiras P.E.R., Pinto P.D., Nascimento S.M.C.: Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers, Ophthalmic Physiological Optics 30(5), 2010, pp. 618-625, http://dx.doi.org/10.1111/j.1475-1313.2010.00741.x
dc.relation.isbasedonClarke F.J.J., McDonald R., Rigg B.: Modification to JPC79 colour difference formula, Journal of the society of Dyers and Colourists 100(4), 1984, pp. 128- 132, https://doi.org/10.1111/j.1478-4408.1984.tb00969.x
dc.relation.isbasedonLuo M.R., Hunt R.W.G.: The structure of the CIE 1997 colour appearance model (CIECAM97s), Color Research & Application 23(3), 1998, pp.138-146, https://doi.org/10.1002/(SICI)1520- 6378(199806)23:3%3C138
dc.relation.isbasedonLuo M.R., Cui G., Rigg B.: The development of the CIE 2000 colour difference formula: CIEDE2000, Color Research & Application 26(5), 2001, pp. 340-350, https://doi.org/10.1002/col.1049
dc.relation.isbasedonBerns R.S., Alman D.H., Reniff L., Snyder G.D., Balonon-Rosen M.R.: Visual determination of supra threshold color-difference tolerances using probit analysis, Color Research & Application 16(5), 1991, pp. 297-316, https://doi.org/10.1002/COL.5080160505
dc.relation.isbasedonWitt K.: Geometric relations between scales of small colour differences, Color Research & Application 24(2), 1999, pp. 78-92, https://doi.org/10.1002/%28SICI%291520- 6378%28199904%2924%3A2%3C78%3A%3AAIDCOL3%3E3.0.CO%3B2-M
dc.relation.isbasedonKim D.H., Nobbs J.H.: New weighting functions for the weighted CIELAB colour difference formula, Proceedings of AIC Colour 97, Kyoto, Japan, 1997, pp. 446-449
dc.relation.isbasedonLuo M.R., Rigg B.: BFD (l:c) colour-difference formula. Part I - development of the formula, Journal of the society of Dyers and Colourists 103(2), 1987, pp. 86-94, http://dx.doi.org/10.1111/j.1478- 4408.1987.tb01099.x
dc.relation.isbasedonCIE Publication No. 15.2-1986. Colorimetry, Commission Intermationale de I’Eclairage
dc.relation.isbasedonLi C.J., Li Z., Wang Z., Xu Y., Luo M.R., Cui G., Melgosa M., Pointer M.R.: A revision of CIECAM02 and its CAT and UCS, Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology), 2016, pp. 208-212, http://dx.doi.org/10.2352/ISSN.2169- 2629.2017.32.208
dc.relation.isbasedonWitt K.: CIE guidelines for coordinated future work on industrial colour-difference evaluation, Color Research & Application 20(6), 1995; pp.399-403, https://doi.org/10.1002/col.5080200609
dc.relation.isbasedonGarcía P.A., Huertas R., Melgosa M., Cui G.: Measurement of the relationship between perceived and computed color differences, Journal of the optical society of America A 24(7), 2007, pp. 1823-1829, https://doi.org/10.1364/JOSAA.24.001823
dc.relation.isbasedonWei M., Ma S., Wang Y., Luo M.R.: Evaluation of whiteness formulas for FWA and non-FWA whites, Journal of the optical society of America A 34(4), 2017, pp. 640-647, http://dx.doi.org/10.1364/JOSAA.34.000640
dc.relation.isbasedonMasaoka K., Berns R.S., Fairchild M.D., Abed F.M.: Number of discernible object colors is a conundrum, Journal of the optical society of America A 30(2), 2013, pp. 264-277, https://doi.org/10.1364/JOSAA.30.000264
dc.relation.ispartofFibres and Textiles
dc.subjectcorrelated color temperaturecs
dc.subjectilluminancecs
dc.subjectCAM02-UCScs
dc.subjectCAM16-UCScs
dc.subjectcolor difference formulacs
dc.titleCOLOR PERCEPTION ESTIMATIONS OF METAMERIC PAIRS UNDER DIFFERENT ILLUMINANCE LEVELSen
dc.typeArticleen
local.accessopen access
local.citation.epage45
local.citation.spage36
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue1
local.relation.volume29
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
05_MUKHTY.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections