NUMERICAL MODELLING OF TEXTILE STRUCTURES: POTENTIAL AND LIMITS

Loading...
Thumbnail Image
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Technical University of Liberec
Abstract
Numerical modelling, namely finite element modelling, is a standardised tool in many branches of engineering. In textile engineering, due to the complexity of the structure, many limitations occur in using this approach. Despite the limitations the finite element modelling of textiles has huge potential for the future. This contribution deals with FE modelling of tensile test in wale and course direction of single jersey knitted fabric. The meso level of the structure was chosen for the model, so it could be possible to track the behaviour of yarn interlacement during the simulated deformation. The virtual model was created according to parameters of single jersey knitted fabric sample, which was produced from polyester monofilament. By using monofilament instead of staple yarn, contacts between fibres in yarn could be excluded in FE model preparation. Two different computational programs were used for simulations – MSC Marc Metant for implicit computing approach and ANSYS LS-DYNA for explicit computing approach. The results from implicit and explicit solver were compared and discussed. Validation of models was done and results were included in the discussion. Due to big deformations of textiles, explicit solver appears to be more suitable for finite element modelling in textile engineering.
Description
Subject(s)
Finite element method, Implicit and explicit solver, Textile structures, Modelling, Tensile test, Knitted fabric
Citation
ISSN
1335-0617
ISBN
Collections