Assessment of Logistics Platform Efficiency Using an Integrated Delphi Analytic Hierarchy Process-data Envelopment Analysis Approach: A Novel Methodological Approach Including a Case Study in Slovenia

DSpace Repository

Show simple item record

dc.contributor.author Bajec, Patricija
dc.contributor.author Kontelj, Monika
dc.contributor.author Groznik, Aleš
dc.contributor.other Ekonomická fakulta cs
dc.date.accessioned 2020-09-02T09:42:32Z
dc.date.available 2020-09-02T09:42:32Z
dc.identifier.issn 1212-3609
dc.identifier.uri https://dspace.tul.cz/handle/15240/157488
dc.description.abstract The objective of this study is to propose a trustworthy, valid and consistent methodological approach for measuring the efficiency of a logistics platform, where an entire country constitutes a logistic platform. Traditional Data Envelopment Analysis (DEA) is found to be an appropriate tool – if its weaknesses are eliminated. DEA results are highly influenced by the choice of appropriate inputs and outputs variables, but the method itself does not provide guidance for their identification. The authors therefore propose to integrate traditional DEA by combining the Delphi technique with the Analytical Hierarchy Process (AHP) method, which will assist in identifying proper, consistent input/output variables, evaluated by their relevance. The proposed framework allows the performance evaluation of the selected platform’s element or elements. It is thus a useful decision support tool for enterprises (private, public, both) that are managing logistics platforms and trying to improve their productivity in order to sustain or improve their position on the competitive market. This methodology allows comparative efficiency analyses to be estimated for similar countries. The presented methodology on one hand enables tailor-made solutions, but on the other hand is very general, and, with minor adjustments, can be applied by a variety of firms and industries. It can be applied in private sector firms in production and service industries, to analyse the relative performance of diverse logistics and non-logistics services, and in public profit or non-profit organisations. en
dc.format text
dc.language.iso en
dc.publisher Technická Univerzita v Liberci cs
dc.publisher Technical university of Liberec, Czech Republic en
dc.relation.ispartof Ekonomie a Management cs
dc.relation.ispartof Economics and Management en
dc.relation.isbasedon Abrahamsson, M., Aldin, N., & Stahre, F. (2003). Logistics platforms for improved strategic flexibility. International Journal of Logistics: Research and Applications, 6(3), 85–106. https://doi.org/10.1080/1367556031000123061
dc.relation.isbasedon Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management science, 39(10), 1261–1264.
dc.relation.isbasedon Antún, J. P., & Alarcón, R. (2014). Ranking Projects of Logistics Platforms: A Methodology Based on the Electre Multicriteria Approach. Procedia – Social and Behavioral Sciences, 160, 5–14. https://doi.org/10.1016/j.sbspro.2014.12.111
dc.relation.isbasedon Awad-Núñez, S., González-Cancelas, N., Soler-Flores, F., & Camarero-Orive, A. (2015). How should the sustainability of the location of dry ports be measured? A proposed methodology using Bayesian networks and multi-criteria decision analysis. Transport, 30(3), 312–319. https://doi.org/10.3846/16484142.2015.1081618
dc.relation.isbasedon Azadi, M., Hosseinzadeh Zoroufchi, K., & Farzipoor Saen, R. (2012). A combination of Russell model and neutral DEA for 3PL provider selection. International Journal of Productivity and Quality Management, 10(1), 25–39. https://doi.org/10.1504/IJPQM.2012.047940
dc.relation.isbasedon Bansal, A., & Kumar, P. (2013). 3PL selection using hybrid model of AHP-PROMETHEE. International Journal of Services and Operations Management, 14(3), 373–397. https://doi.org/10.1504/IJSOM.2013.052096
dc.relation.isbasedon Bolumole, Y. A., Closs, D. J., & Rodammer, F. A. (2015). The economic development role of regional logistics hubs: a cross‐country study of interorganizational governance models. Journal of Business Logistics, 36(2), 182–198. https://doi.org/10.1111/jbl.12088
dc.relation.isbasedon Bourlakis, M., Melewar, T., Banomyong, R., & Supatn, N. (2011). Selecting logistics providers in Thailand: a shippers’ perspective. European Journal of Marketing, 45(3), 419–437. https://doi.org/10.1108/03090561111107258
dc.relation.isbasedon Bray, S., Caggiani, L., & Ottomanelli, M. (2015). Measuring transport systems efficiency under uncertainty by fuzzy sets theory based Data Envelopment Analysis: theoretical and practical comparison with traditional DEA model. Transportation Research Procedia, 5, 186–200. https://doi.org/10.1016/j.trpro.2015.01.005
dc.relation.isbasedon Çakir, E. (2009). Logistics outsourcing and selection of third party logistics service provider (3PL) via fuzzy AHP (Master Thesis). Bahçeşehir University, Istanbul.
dc.relation.isbasedon Charles, V., Kumar, M., & Kavitha, S. I. (2012). Measuring the efficiency of assembled printed circuit boards with undesirable outputs using data envelopment analysis. International Journal of Production Economics, 136(1), 194–206. https://doi.org/10.1016/j.ijpe.2011.11.010
dc.relation.isbasedon Cheng, M. C. B., & Wang, J. J. (2016). An integrative approach in measuring hub-port supply chain performance: Potential contributions of a logistics and transport data exchange platform. Case Studies on Transport Policy, 4(2), 150–160. https://doi.org/10.1016/j.cstp.2016.03.001
dc.relation.isbasedon Cook, W. D., Kress, M., & Seiford, L. M. (1992). Prioritization models for frontier decision making units in DEA. European Journal of Operational Research, 59(2), 319–323. https://doi.org/10.1016/0377-2217(92)90148-3
dc.relation.isbasedon Cylus, J., Papanicolas, I., & Smith, P. C. (2017). Using data envelopment analysis to address the challenges of comparing health system efficiency. Global Policy, 8(52), 60–68. https://doi.org/10.1111/1758-5899.12212
dc.relation.isbasedon Daim, T. U., Udbye, A., & Balasubramanian, A. (2012). Use of analytic hierarchy process (AHP) for selection of 3PL providers. Journal of Manufacturing Technology Management, 24(1), 28–51. https://doi.org/10.1108/17410381311287472
dc.relation.isbasedon de Carvalho, C. C., de Carvalho, M. F. H., & Lima Jr, O. F. (2013). Efficient logistic platform design: the case of Campinas Platform. Paper presented at XVI International Conference on Industrial Engineering and Operations Management, São Carlos, Brazil. Retrieved from
dc.relation.isbasedon http://www.abepro.org.br/biblioteca/enegep2010_ti_st_113_741_17234.pdf
dc.relation.isbasedon Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., & Shale, E. A. (2001). Pitfalls and protocols in DEA. European Journal of Operational Research, 132(2), 245–259. https://doi.org/10.1016/S0377-2217(00)00149-1
dc.relation.isbasedon Fanti, M. P., Iacobellis, G., Mangini, A. M., Precchiazzi, I., & Ukovich, W. (2017). A flexible platform for intermodal transportation and integrated logistics. Paper presented at the Service Operations and Logistics, and Informatics (SOLI), 2017 IEEE International Conference (pp. 224–229). https://doi.org/10.1109/SOLI.2017.8120998
dc.relation.isbasedon Fawcett, S. E., Waller, M. A., & Bowersox, D. J. (2011). Cinderella in the C‐suite: conducting influential research to advance the logistics and supply chain disciplines. Journal of Business Logistics, 32(2), 115–121. https://doi.org/10.1111/j.2158-1592.2011.01010.x
dc.relation.isbasedon Forman, E. H., Saaty, T. L., Selly, M. A., & Waldron, R. (1983). Expert choice. McLean, VA: Decision Support Software Inc.
dc.relation.isbasedon Gattuso, D., Cassone, G. C., & Pellicanò, D. S. (2014). A micro-simulation model for performance evaluation of a logistics platform. Transportation Research Procedia, 3, 574–583. https://doi.org/10.1016/j.trpro.2014.10.036
dc.relation.isbasedon Grzybowska, K., & Gajsek, B. (2016). Supply Chain Logistics Platform as a Supply Chain Coordination Support. In J. Bajo, M. J. Escalona, S. Giroux, P. Hoffa-Dąbrowska, V. Julián, P. Novais, N. Sánchez-Pi, R. Unland & R. Azambuja-Silveira (Eds.), Highlights of Practical Applications of Scalable Multi-Agent Systems (Vol. 616, pp. 61–72). Cham: Springer. https://doi.org/10.1007/978-3-319-39387-2_6
dc.relation.isbasedon Haralambides, H., & Gujar, G. (2012). On balancing supply chain efficiency and environmental impacts: An eco-DEA model applied to the dry port sector of India. Maritime Economics & Logistics, 14(1), 122–137. https://doi.org/10.1057/mel.2011.19
dc.relation.isbasedon Hsu, C.-I., Liao, P., Yang, L.-H., & Chen, Y.-H. (2005). High-tech firm’s perception and demand for air cargo logistics services. Journal of the Eastern Asia Society for Transportation Studies, 6, 2868–2880. https://doi.org/10.11175/easts.6.2868
dc.relation.isbasedon Huguenin, J.-M. (2012). Data Envelopment Analysis (DEA): a pedagogical guide for decision makers in the public sector. Chavannes-près-Renens: Institut de hautes études en administration publique.
dc.relation.isbasedon Jablonský, J. (2009). Software support for multiple criteria decision making problems. Management Information Systems, 4(2), 29–34.
dc.relation.isbasedon Jaskowski, P., Biruk, S., & Bucon, R. (2010). Assessing contractor selection criteria weights with fuzzy AHP method application in group decision environment. Automation in construction, 19(2), 120–126. https://doi.org/10.1016/j.autcon.2009.12.014
dc.relation.isbasedon Jenkins, L., & Anderson, M. (2003). A multivariate statistical approach to reducing the number of variables in data envelopment analysis. European Journal of Operational Research, 147(1), 51–61. https://doi.org/10.1016/S0377-2217(02)00243-6
dc.relation.isbasedon Johnes, J. (2006). Data envelopment analysis and its application to the measurement of efficiency in higher education. Economics of Education Review, 25(3), 273–288. https://doi.org/10.1016/j.econedurev.2005.02.005
dc.relation.isbasedon Kocisova, K., Hass-Symotiuk, M., & Kludacz-Alessandri, M. (2018). Use of the DEA method to verify the performance model for hospitals. E&M Economics and Management, 21(4), 125–140. https://dx.doi.org/10.15240/tul/001/2018-4-009
dc.relation.isbasedon Kumar, P., & Singh, R. K. (2012). A fuzzy AHP and TOPSIS methodology to evaluate 3PL in a supply chain. Journal of Modelling in Management, 7(3), 287–303. https://doi.org/10.1108/17465661211283287
dc.relation.isbasedon Kumar Singh, S., & Kumar Bajpai, V. (2013). Estimation of operational efficiency and its determinants using DEA: The case of Indian coal-fired power plants. International Journal of Energy Sector Management, 7(4), 409–429. https://doi.org/10.1108/IJESM-03-2013-0009
dc.relation.isbasedon Lakshmanan, T. R. (2011). The broader economic consequences of transport infrastructure investments. Journal of transport geography, 19(1), 1–12. https://doi.org/10.1016/j.jtrangeo.2010.01.001
dc.relation.isbasedon Macharis, C., Springael, J., De Brucker, K., & Verbeke, A. (2004). PROMETHEE and AHP: The design of operational synergies in multicriteria analysis: Strengthening PROMETHEE with ideas of AHP. European Journal of Operational Research, 153(2), 307–317. https://doi.org/10.1016/S0377-2217(03)00153-X
dc.relation.isbasedon Markovits-Somogyi, R., Gecse, G., & Bokor, Z. (2011). Basic efficiency measurement of Hungarian logistics centres using data envelopment analysis. Periodica Polytechnica Social and Management Sciences, 19(2), 97–101. https://doi.org/10.3311/pp.so.2011-2.06
dc.relation.isbasedon Martí, L., Martín, J. C., & Puertas, R. (2017). A DEA-LOGISTICS PERFORMANCE INDEX. Journal of Applied Economics, 20(1), 169–192. https://doi.org/10.1016/S1514-0326(17)30008-9
dc.relation.isbasedon Matajič, M., Šarenac, M., Bolha, V., Dobrijević, A., Fridrih Praznik, M., Genjac, A., … Kramar, U. (2011). Analiza možnosti in potreb razvoja javne železniške infrastrukture v Republiki Sloveniji: Strokovno-razvojna naloga, končno poročilo. Ljubljana: Prometni inštitut Ljubljana.
dc.relation.isbasedon Nataraja, N. R., & Johnson, A. L. (2011). Guidelines for using variable selection techniques in data envelopment analysis. European Journal of Operational Research, 215(3), 662–669. https://doi.org/10.1016/j.ejor.2011.06.045
dc.relation.isbasedon Notteboom, T. E., & Rodrigue, J.-P. (2005). Port regionalization: towards a new phase in port development. Maritime Policy & Management, 32(3), 297–313. https://doi.org/10.1080/03088830500139885
dc.relation.isbasedon Pastor, J. T., Ruiz, J. L., & Sirvent, I. (2002). A statistical test for nested radial DEA models. Operations Research, 50(4), 728–735. https://doi.org/10.1287/opre.50.4.728.2866
dc.relation.isbasedon Qureshi, M., Kumar, D., & Kumar, P. (2007). Selection of potential 3PL services providers using TOPSIS with interval data. Paper presented at the Industrial Engineering and Engineering Management, 2007 IEEE International Conference (pp. 1512–1516). https://doi.org/10.1109/IEEM.2007.4419445
dc.relation.isbasedon Rajasekar, T., & Deo, M. (2014). Is there any efficiency difference between input and output oriented DEA Models: An approach to major ports in India. Journal of Business and Economic Policy, 1(2), 18–28.
dc.relation.isbasedon Ramanathan, R. (2003). An introduction to data envelopment analysis: a tool for performance measurement. New Delhi: Sage Publications.
dc.relation.isbasedon Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. http://dx.doi.org/10.1016/0377-2217(90)90057-I
dc.relation.isbasedon Saaty, T. L. (2008). Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. RACSAM – Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 102(2), 251–318. https://doi.org/10.1007/BF03191825
dc.relation.isbasedon Saaty, T. L., & Ergu, D. (2015). When is a decision-making method trustworthy? Criteria for evaluating multi-criteria decision-making methods. International Journal of Information Technology & Decision Making, 14(06), 1171–1187. https://doi.org/10.1142/S021962201550025X
dc.relation.isbasedon Sarmento, J., Renneboog, L., & Verga-Matos, P. (2017). Measuring highway efficiency by a DEA approach and the Malmquist index. European Journal of Transport and Infrastructure Research, 17(4), 530–551. https://doi.org/10.18757/ejtir.2017.17.4.3213
dc.relation.isbasedon Sheffi, Y. (2013). Logistics-intensive clusters: global competitiveness and regional growth. In Handbook of global logistics (pp. 463–500). New York, NY: Springer.
dc.relation.isbasedon Silva, R. M. d., Senna, E. T. P., Lima, O. F. Jr, & Senna, L. A. d. S. (2015). A framework of performance indicators used in the governance of logistics platforms: the multiple-case study. Journal of Transport Literature, 9(1), 5–9. https://doi.org/10.1590/2238-1031.jtl.v9n1a1
dc.relation.isbasedon Srisawat, P., Kronprasert, N., & Arunotayanun, K. (2017). Development of decision support system for evaluating spatial efficiency of regional transport logistics. Transportation Research Procedia, 25, 4832–4851. https://doi.org/10.1016/j.trpro.2017.05.493
dc.relation.isbasedon Sufian, F. (2007). Trends in the efficiency of Singapore’s commercial banking groups: A non-stochastic frontier DEA window analysis approach. International Journal of Productivity and Performance Management, 56(2), 99–136. https://doi.org/10.1108/17410400710722626
dc.relation.isbasedon Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197(1), 243–252. https://doi.org/10.1016/j.ejor.2008.05.027
dc.relation.isbasedon Vincová, K. (2005). Using DEA models to measure efficiency. Biatec, 13(8), 24–28.
dc.relation.isbasedon Wu, H.-b., & Yue, Y. (2008). 3PL Vendors Evaluation Project Based on Entropy Right TOPSIS. Journal of Lanzhou Jiaotong University, 27, 88–91.
dc.relation.isbasedon Yang, C., Taudes, A., & Dong, G. (2017). Efficiency analysis of European Freight Villages: three peers for benchmarking. Central European Journal of Operations Research, 25(1), 91–122. https://doi.org/10.1007/s10100-015-0424-5
dc.relation.isbasedon Yasaroglu, B. A., Özdağoğlu, G., & Özdağoğlu, A. (2006). Fuzzy logic-based decision making model on selection and evaluation of logistics service providers within a firm. Paper presented at the 4th International Logistics and Supply Chain Congress, Izmir, Turkey.
dc.relation.isbasedon Yong, G. (2017). The Impact of Service Innovation Capability on Logistics Platform Performance. Paper presented at International Conference on Economics, Management Engineering and Marketing (EMEM 2017). https://doi.org/10.12783/dtem/emem2017/17098
dc.relation.isbasedon Zhu, J. (2014). Quantitative models for performance evaluation and benchmarking: Data envelopment analysis with spreadsheets, In International Series in Operations Research & Management Science (Vol. 213). Cham: Springer. https://doi.org/10.1007/978-3-319-06647-9.
dc.rights CC BY-NC
dc.subject Supply chain en
dc.subject logistics platform en
dc.subject measuring efficiency en
dc.subject methodology en
dc.subject Delphi en
dc.subject AHP en
dc.subject DEA en
dc.subject.classification C39
dc.subject.classification D57
dc.subject.classification M21
dc.subject.classification O49
dc.subject.classification R42
dc.title Assessment of Logistics Platform Efficiency Using an Integrated Delphi Analytic Hierarchy Process-data Envelopment Analysis Approach: A Novel Methodological Approach Including a Case Study in Slovenia en
dc.type Article en
dc.publisher.abbreviation TUL
dc.relation.isrefereed true
dc.identifier.doi 10.15240/tul/001/2020-3-012
dc.identifier.eissn 2336-5604
local.relation.volume 3
local.relation.issue 23
local.relation.abbreviation E+M cs
local.relation.abbreviation E&M en
local.faculty Faculty of Economics
local.citation.spage 191
local.citation.epage 207
local.access open
local.fulltext yes
local.filename EM_3_2020_12


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

My Account