Magnetic accumulation of kinetic energy from a reciprocating mechanical system for a dynamic behaviour improvement

Abstract
This paper presents a magnetic means of accumulating kinetic energy from a traversing rod (TR) used to guide yarn during winding processes on rotor spinning machines. A passive magnetic system for accumulating kinetic energy at the reversal points of reciprocating motion is introduced, and its unique repulsive magnetic force is described in relation to the specific traversing-motion characteristic. The magnetic damping force phenomenon and preconditions for its application in the machine are also defined and discussed. We also show magnetic field optimisation by means of pole-piece geometry modification to obtain a magnetic force characteristic that closely approximates the required motion characteristic. Thus, the efficiency of kinetic-energy accumulation at the reversal points of the reciprocating motion of the TR is increased. The utilisation of an eddy-current effect on the accumulator body to apply the magnetic-damping phenomenon for vibration reduction is also described. The results of this work demonstrate the promise of the system using modern rare-earth compound-based magnets applicable not only to the studied traversing system but also to various mechanical devices as a non-contact means of reducing deformation and vibration. The developed and experimentally verified mathematical models presented here represent a useful tool for further optimisation of specific applications in the field of mechanics. (C) 2019 Elsevier Ltd. All rights reserved.
Description
Subject(s)
Magnetic damping, Magnetic spring, Kinetic energy, Accumulation, Permanent magnet, Reciprocating motion
Citation
ISSN
ISBN
Collections