ANTIMICROBIAL ACTIVITY OF COTTON FIBRES TREATED WITH PARTICLES EXTRACTED FROM CITRUS PLANTS: A REVIEW

dc.contributor.authorALI, REHMAT
dc.contributor.authorKARAMAT, UM E HABIBA
dc.contributor.authorNAZIR, HAFIZA SABA
dc.contributor.authorBAIG, MIRZA MUHAMMED MOHSIN
dc.contributor.authorKHAN, BILAL ALAM
dc.contributor.authorULLAH, ASAD
dc.contributor.authorUSMAN, OSAMA
dc.contributor.authorWASEEM, TANYA
dc.contributor.authorTAHIR, MUHAMMAD FARRUKH
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2023-05-18T08:22:48Z
dc.date.available2023-05-18T08:22:48Z
dc.description.abstractNanotechnology is an emerging technology in textile sector for the fabrication of functional textiles with different properties such as antibacterial, hydrophobicity, UV-protection, flame retardancy, anti-static and self-cleaning. In current COVID-19 crises, the development of antimicrobial textiles through the deposition of nanoparticles has emerged as a research subject of particular interest. Recently, the green-synthesis of nanoparticles from plant extracts has become an effective alternative to conventional physical and chemical synthesis methods due to being environmentally benign and nontoxic. In this review article, the significance of nanotechnology in antibacterial finishing of textiles, mechanism of antibacterial activity of nanoparticles, significance of green synthesis methods for nanoparticles have been discussed. The green-synthesis of different nanoparticles from the citrus plant extracts and their application on textiles for imparting antibacterial activity is reviewed in particular. The chemical composition of citrus plant extracts and their role as bioreductants in the synthesis of nanoparticles is also highlighted. Moreover, different qualitative and quantitative standard testing protocols employed for the antimicrobial characterization of plant extracts and textiles have been discussed. The major challenges and limitations associated with the plant-based biosynthesis of nanoparticles have also been highlighted.cs
dc.formattext
dc.format.extent17 stran
dc.identifier.doi10.15240/tul/008/2023-2-008
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/172137
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonSingh P., Kim Y.J., Zhang D., et al.: Biological synthesis of nanoparticles from plants and microorganisms, Trends Biotechnol, 34(7), 2016, pp. 588–599. https://doi.org/10.1016/j.tibtech.2016.02.006
dc.relation.isbasedonKulkarni N. and Muddapur U.: Biosynthesis of metal nanoparticles: A review, J Nanotechnol, 2014, 2014. https://doi.org/10.1155/2014/510246
dc.relation.isbasedonAli A., Baheti V., Militky J., et al.: Copper coated multifunctional cotton fabrics, Journal of Industrial Textiles, 48(2), 2017, pp. 448-464. https://doi.org/10.1177/1528083717732076
dc.relation.isbasedonNarayanan B.K. and Sakthivel N.: Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents, Adv Colloid Interface Sci, 169(2), 2011, pp. 59–79. https://doi.org/10.1016/j.cis.2011.08.004
dc.relation.isbasedonAfraz N., Uddin F., Syed U., et al.: Antimicrobial finishes for Textiles, Current Trends in Fashion Technology & Textile Engineering, 4(5), 2019, pp. 87-94. https://doi.org/10.19080/CTFTTE.2019.04.555646
dc.relation.isbasedonPeriolatto M., Ferrero F., Vineis C., et al.: Novel antimicrobial agents and processes for textile applications, Antibacterial agents, 17, 2017.
dc.relation.isbasedonAli A., Baheti V., Militky J., and Khan Z.: Utility of silvercoated fabrics as electrodes in electrotherapy applications, J Appl Polym Sci, 135(23), 2018. https://doi.org/10.1002/app.46357
dc.relation.isbasedonWolela A. D.: Antibacterial Finishing of Cotton Textiles with Extract of Citrus Fruit Peels, Fashion Technology & Textile Engineering, 6(1), 2020, pp. 1–7. https://doi.org/10.19080/CTFTTE.2020.06.555676
dc.relation.isbasedonMurthy L. I. and Halperin W. E.: Medical screening and biological monitoring: A guide to the literature for physicians, J Occup Environ Med, 1995, pp. 170–184.
dc.relation.isbasedonAli A., Baheti V., Militky J., et al.: Copper coated multifunctional cotton fabrics, Journal of Industrial Textiles, 48(2), 2018, pp. 448–464. https://doi.org/10.1177/1528083717732076
dc.relation.isbasedonGan X., Wu Y., Liu L., et al.: Electroless plating of Cu–Ni– P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics, J Alloys Compd, 455(1–2), 2008, pp. 308–313
dc.relation.isbasedonColeridge P. T. and Templeton I. M.: Fermi-surface radii in copper, silver, and gold, Phys Rev B, 25(12), 1982, p. 7818. https://doi.org/10.1016/j.tibtech.2016.02.006
dc.relation.isbasedonMargariti C.: The Effects of micro-organisms in simulated soil burial on cellulosic and proteinaceous textiles and the morphology of the fibres, Studies in Conservation, 66(5), 2021, pp. 282–297.
dc.relation.isbasedonLandage S. M. and Wasif A. I.: Nanosilver–an effective antimicrobial agent for finishing of textiles, International Journal of Engineering Sciences & Emerging Technologies, 4(1), 2012, pp. 66–78.
dc.relation.isbasedonKelly M., Macdougall K., Olabisi O., and McGuire N.: In vivo response to polypropylene following implantation in animal models: a review of biocompatibility, Int Urogynecol J, 28(2), 2017, pp. 171–180.
dc.relation.isbasedonAli A. et al.: Electrical conductivity and physiological comfort of silver coated cotton fabrics, Journal of the Textile Institute, 109, no. January, 2018, pp. 620–628. https://doi: 10.1080/00405000.2017.1362148
dc.relation.isbasedonAndra S., Jeevanandam J., and Muthalagu M.: Emerging nanomaterials for antibacterial textile fabrication, Naunyn Schmiedebergs Arch Pharmacol, 394(7), 2021, pp. 1355– 1382
dc.relation.isbasedonOh K. W., Park H. J., and Kim S. H.: Stretchable conductive fabric for electrotherapy, J Appl Polym Sci, 88(5), 2003, pp. 1225–1229.
dc.relation.isbasedonRytlewski P., Jagodziński B., and Moraczewski K.: Laserassisted electroless metallization of polymer materials: a critical review, Reviews of Adhesion and Adhesives, 4(3), 2016, pp. 334–366.
dc.relation.isbasedonKhandve P.: Nanotechnology for building material, International Journal of Basic and Applied Research, 4, 2014, pp. 146–151.
dc.relation.isbasedonPorter A. L. and Youtie J.: How interdisciplinary is nanotechnology?, Journal of Nanoparticle Research, 11(5), 2009, pp. 1023–1041. https://doi.org/10.1007/s11051-009-9607-0
dc.relation.isbasedonOnyancha W., Ali M.I., Sharma G., and Moin S.: Synergistic potential of herbal plants and conventional antibiotics against multidrug-resistant bacteria, Medicinal Plants-International Journal of Phytomedicines and Related Industries, 13(1), 2021, pp. 13–21. https://doi.org/10.5958/0975-6892.2021.00003.4
dc.relation.isbasedonRai M., Ingle A.P., Pandit R., et al.: Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities, Expert Rev Anti Infect Ther, 18(4), 2020, pp. 367–379. https://doi.org/10.1080/14787210.2020.1730815
dc.relation.isbasedonDizaj S.M., Mennati A., Jafari S., et al.: Antimicrobial activity of carbon-based nanoparticles, Adv Pharm Bull, 5(1), 2015, p. 19-23. https://doi.org/10.5681/apb.2015.003
dc.relation.isbasedonJoshi M. and Bhattacharyya A.. Nanotechnology–a new route to high-performance functional textiles, Textile Progress, 43(3), 2011, pp. 155–233. https://doi.org/10.1080/00405167.2011.570027
dc.relation.isbasedonAli A. et al.: Multifunctional electrically conductive copper electroplated fabrics sensitizes by In-situ deposition of copper and silver nanoparticles,” Nanomaterials, 11(11), Nov. 2021, p. 3097. https://doi: 10.3390/nano11113097
dc.relation.isbasedonAmanullah M. and Al-Tahini A. M.: Nano-technology-its significance in smart fluid development for oil and gas field application, in SPE Saudi Arabia Section Technical Symposium, 2009.
dc.relation.isbasedonKotcherlakota R. et al.: Biosynthesized gold nanoparticles: In vivo study of near-infrared fluorescence (NIR)-based bio-imaging and cell labeling applications, ACS Biomater Sci Eng, 5(10), 2019 pp. 5439–5452. https://doi.org/10.1021/acsbiomaterials.9b00721
dc.relation.isbasedonCheng L. et al.: Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies, Int J Nanomedicine, vol. 13, 2018, p. 3311. https://doi.org/10.2147/IJN.S165125
dc.relation.isbasedonParham S., Wicaksono D. H. B., Bagherbaigi S., et al.: Antimicrobial treatment of different metal oxide nanoparticles: A critical review, Journal of the Chinese Chemical Society, 63(4), 2016, pp. 385–393. https://doi.org/10.1002/jccs.201500446
dc.relation.isbasedonYan X. et al.: Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach, Metallomics, 10(4), 2018, pp. 557–564. https://doi.org/10.1039/c7mt00328e
dc.relation.isbasedonConcha-Guerrero S. I. et al.: Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil, J Nanomater, vol. 2014, 2014. https://doi.org/10.1155/2014/148743
dc.relation.isbasedonAzam A., Ahmed A. S., Oves M., et al.: Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains, Int J Nanomedicine, 7, 2012, p. 3527. https://doi.org/10.2147/IJN.S29020
dc.relation.isbasedonAndra S., Balu S., Jeevanandam J., and Muthalagu M.: Emerging nanomaterials for antibacterial textile fabrication, Naunan-Schmiedeberg’s Archives of Pharmacology, 2021, pp. 1355–1382. https://doi.org/10.1007/s00210-021-02064-8
dc.relation.isbasedonLee H. J., Lee G., Jang N. R., et al.: Biological synthesis of copper nanoparticles using plant extract, Nanotechnology, 1(1), 2011, pp. 371–374.
dc.relation.isbasedonZhang J., Chaker M., and Ma D.: Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications, J Colloid Interface Sci, vol. 489, 2017, pp. 138–149. https://doi.org/10.1016/j.jcis.2016.07.050
dc.relation.isbasedonLan C. et al.: Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition, Nano Res, 11(6), 2018, pp. 3371–3384. https://doi.org/10.1007/s12274-017-1941-4
dc.relation.isbasedonLi Y.et al.: Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue, Science of The Total Environment, vol. 722, 2020, p. 137972. https://doi.org/10.1016/j.scitotenv.2020.137972
dc.relation.isbasedonGomathi A. C., Rajarathinam S. R. X., Sadiq A. M., and Rajeshkumar S.: Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line, J Drug Deliv Sci Technol, vol. 55, 2020, p. 101376. https://doi.org/10.1016/j.jddst.2019.101376
dc.relation.isbasedonSalem S.S. and Fouda A.: Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview, Biol Trace Elem Res, 199(1), 2021, pp. 344–370. https://doi.org/10.1007/s12011-020-02138-3
dc.relation.isbasedonAhmed S. and Ikram S.: Biosynthesis of gold nanoparticles: a green approach, J Photochem Photobiol B, vol. 161, 2016, pp. 141–153. https://doi.org/10.1016/j.jphotobiol.2016.04.034
dc.relation.isbasedonMohamad N.A.N., Arham N.A., J. Jai, et al.: Plant extract as reducing agent in synthesis of metallic nanoparticles: a review, Adv Mat Res, vol. 832, 2014, pp. 350–355. https://doi.org/10.4028/www.scientific.net/AMR.832.350
dc.relation.isbasedonDas R.K., et al., Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects, Nanotechnology for Environmental Engineering, 2(1), 2017, pp. 1–21. https://doi.org/10.1007/s41204-017-0029-4
dc.relation.isbasedonLiu Y., Heying E., and Tanumihardjo S. A.: History, global distribution, and nutritional importance of citrus fruits, Compr Rev Food Sci Food Saf, vol. 11, no. 6, 2012, pp. 530–545. https://doi.org/10.1111/j.1541-4337.2012.00201.x
dc.relation.isbasedonPark Y., Hong Y. N., Weyers A., et al.: Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles, IET Nanobiotechnol, 5(3), 2011, pp. 69–78. https://doi.org/10.1049/iet-nbt.2010.0033
dc.relation.isbasedonChavan P., Singh A. K., and Kaur G.: Recent progress in the utilization of industrial waste and by-products of citrus fruits: A review, J Food Process Eng, 41(8), 2018, p. e12895. https://doi.org/10.1111/jfpe.12895
dc.relation.isbasedonZayed M., Ghazal H., Othman H.A., and Hassabo A. G.: Synthesis of different nanometals using citrus sinensis peel (orange peel) waste extraction for valuable functionalization of cotton fabric, Chemical Papers, 76(2), 2022, pp. 639–660. https://doi.org/10.1007/s11696-021-01881-8
dc.relation.isbasedonMeneguzzo F., Ciriminna R., Zabini F., Pagliaro M.: Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production, Processes, 8(5), 2020 p. 549. https://doi.org/10.3390/pr8050549
dc.relation.isbasedonYi L., Ma S., and Ren D.: Phytochemistry and bioactivity of Citrus flavonoids: a focus on antioxidant, antiinflammatory, anticancer and cardiovascular protection activities, Phytochemistry Reviews, 16(3), 2017, pp. 479– 511. https://doi.org/10.1007/s11101-017-9497-1
dc.relation.isbasedonGuo C. et al.: Chemical composition, antioxidant, antibacterial, and tyrosinase inhibition activity of extracts from Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) peel, J Sci Food Agric, 100(6), 2020, pp. 2664– 2674. https://doi.org/10.1002/jsfa.10297
dc.relation.isbasedonGuo J., Tao H., Cao Y., et al.: Prevention of obesity and type 2 diabetes with aged citrus https://DOI:10.1016/j.jep.2018.03.031peel (Chenpi) extract, J Agric Food Chem, 64(10), 2016. pp. 2053–2061. https://doi.org/10.1021/acs.jafc.5b06157
dc.relation.isbasedonBuyukkurt O. K., Guclu G., Kelebek H., and Selli S.: Characterization of phenolic compounds in sweet lime (Citrus limetta) peel and freshly squeezed juices by LCDAD-ESI-MS/MS and their antioxidant activity, Journal of Food Measurement and Characterization, 13(4), 2019, pp. 3242–3249. https://doi.org/10.1007/s11694-019-00246-w
dc.relation.isbasedonYu X. et al.: Citri Reticulatae Pericarpium (Chenpi): Botany, ethnopharmacology, phytochemistry, and pharmacology of a frequently used traditional Chinese medicine,” J Ethnopharmacol, 220, 2018, pp. 265–282. https://doi.org/10.1016/j.jep.2018.03.031
dc.relation.isbasedonLiu N. et al.: A review of chemical constituents and healthpromoting effects of citrus peels, Food Chem, 365, 2021, pp. 130585. https://doi.org/10.1016/j.foodchem.2021.130585
dc.relation.isbasedonGuo Q., Liu K., Deng W., et al.: Chemical composition and antimicrobial activity of Gannan navel orange (Citrus sinensis Osbeck cv. Newhall) peel essential oils, Food Sci Nutr, 6(6), 2018, pp. 1431–1437. https://doi.org/10.1002/fsn3.688
dc.relation.isbasedonHosni K. et al.: Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence, Food Chem, 123(4), pp. 1098–1104. https://doi.org/10.1016/j.foodchem.2010.05.0682010
dc.relation.isbasedonFarahmandfar R., Tirgarian B., Dehghan B., and Nemati A.: Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: Changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders, Journal of Food Measurement and Characterization, 14(2), 2020, pp. 862–875. https://doi.org/10.1007/s11694-019-00334-x
dc.relation.isbasedonLoizzo M. R., et al.: Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti-cholinesterase activities, J Sci Food Agric, 92(15), 2012, pp. 2960–2967. https://doi.org/10.1002/jsfa.5708
dc.relation.isbasedonRehan M., Abdel-Wahed N.A.M., Farouk A., and ElZawahry N.M.: Extraction of valuable compounds from orange peel waste for advanced functionalization of cellulosic surfaces, ACS Sustain Chem Eng, 6(5), 2018, pp. 5911–5928. https://doi.org/10.1021/acssuschemeng.7b04302
dc.relation.isbasedonBabu K.M.: Antimicrobial finishes for textiles, Asian Textile Journal, 12(4), 2003, pp. 64–68. https://doi.org/10.19080/ctftte.2019.04.555646
dc.relation.isbasedonDe Normalisation A.F.: Huiles Essentielles, Monographie Relative aux Huiles Essentielles, Tome 2, vols 1 and 2,” AFNOR: Paris, 2000.
dc.relation.isbasedonGuenther E. and Althausen D.: The essential oils, vol. 1. Van Nostrand New York, 1948.
dc.relation.isbasedonDe Castro M.D.L., Jiménez-Carmona M.M., and Fernandez-Perez V.: Towards more rational techniques for the isolation of valuable essential oils from plants, TrAC Trends in Analytical Chemistry, 18(11), 1999, pp. 708–716. https://doi.org/10.1016/S0165-9936(99)00177-6
dc.relation.isbasedonVinatoru M.: An overview of the ultrasonically assisted extraction of bioactive principles from herbs, Ultrason Sonochem, 8(3), 2001, pp. 303–313. https://doi.org/10.1016/S1350-4177(01)00071-2
dc.relation.isbasedonRezzoug S. A., Louka N., and Allaf K.: Effect of the main processing parameters of the instantaneous controlled pressure drop process on oil isolation from rosemary leaves. Kinetics aspects, Journal of Essential Oil Research, 12(3), 2000, pp. 336–344. https://doi.org/10.1080/10412905.2000.9699531
dc.relation.isbasedonReverchon E. and De Marco I.: Supercritical fluid extraction and fractionation of natural matter, J Supercrit Fluids, 38(2), 2006, pp. 146–166. https://doi.org/10.1016/j.supflu.2006.03.020
dc.relation.isbasedonJimenez-Carmona M.M., Ubera J.L., and De Castro M.D. L.: Comparison of continuous subcritical water extraction and hydrodistillation of marjoram essential oil, J Chromatogr A, 855(2), 1999, pp. 625–632. https://doi.org/10.1016/s0021-9673(99)00703-7
dc.relation.isbasedonKokolakis A. K. and Golfinopoulos S. K.: Microwaveassisted techniques (MATs); a quick way to extract a fragrance: A review, Nat Prod Commun, 8(10), 2013, p. 1934578X1300801040. https://doi.org/10.1177/1934578X1300801040
dc.relation.isbasedonLucchesi M. E., Smadja J., Bradshaw S., Louw W., and Chemat F.: Solvent free microwave extraction of Elletaria cardamomum L.: A multivariate study of a new technique for the extraction of essential oil, J Food Eng, 79(3), 2007, pp. 1079–1086. https://doi.org/10.1016/j.jfoodeng.2006.03.029
dc.relation.isbasedonAlkhulaifi M.M. et al.: Green synthesis of silver nanoparticles using Citrus limon peels and evaluation of their antibacterial and cytotoxic properties, Saudi J Biol Sci, 27(12), 2020, pp. 3434–3441. https://doi.org/10.1016/j.sjbs.2020.09.031
dc.relation.isbasedonNgoepe N. M., Mathipa M. M., and Hintsho-Mbita N. C.: Biosynthesis of titanium dioxide nanoparticles for the photodegradation of dyes and removal of bacteria, Optik (Stuttg), 224, (June), 2020, p. 165728. https://doi.org/10.1016/j.ijleo.2020.165728
dc.relation.isbasedonBasnet P., Inakhunbi Chanu T., Samanta D., and Chatterjee S.: A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents, J Photochem Photobiol B, 183, 2018, pp. 201–221. https://doi: 10.1016/j.jphotobiol.2018.04.036
dc.relation.isbasedonSamat N. A. and Nor R. M., “Sol–gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts,” Ceram Int, vol. 39, 2013, pp. S545–S548. https://doi.org/10.1016/j.ceramint.2012.10.132
dc.relation.isbasedonFirdhouse M. J. and Lalitha P.: Biosynthesis of silver nanoparticles and its applications, J Nanotechnol, 2015, (SeptemberP) 2014, 2015. https://doi.org/10.1155/2015/829526
dc.relation.isbasedonLogeswari P., Silambarasan S., and Abraham J.: Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties, Scie tia Iranica, 20(3), 2013,pp. 1049–1054. https://doi.org/10.1016/j.scient.2013.05.016
dc.relation.isbasedonNaikoo G. A. et al.: Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review, Journal of Saudi Chemical Society, 25(9), 2021, p. 101304. https://doi.org/10.1016/j.jscs.2021.101304
dc.relation.isbasedonShende S., Ingle A. P., Gade A., and Rai M., Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity, World J Microbiol Biotechnol, 31(6), 2015, pp. 865–873. https://doi.org/10.1007/s11274-015-1840-3
dc.relation.isbasedonVeeraputhiran V.: Bio-Catalytic Synthesis of Silver Nanoparticles, Int. J. Chem Tech Res., 5(5), 2013, pp. 2555 – 2562.
dc.relation.isbasedonDurmuş A., Çolak H., and Karaköse E.: Production and examination of ZnO thin film for first time using green synthesized method from aqueous Citrus reticulata peel extract, J Alloys Compd, 809, 2019, pp. 1–9. https://doi.org/10.1016/j.jallcom.2019.151813
dc.relation.isbasedonHammer K. A., Carson C. F., and Riley T. V.: Antimicrobial activity of essential oils and other plant extracts, J Appl Microbiol, 86, (6), 1999, pp. 985–990. https://doi.org/10.1046/j.1365-2672.1999.00780.x
dc.relation.isbasedonThangamani K. and Periasamy R.: Study on antimicrobial activity of cotton, bamboo, and soybean fabrics with herbal finishing, Int Res J Pharm, 8(5), 2017,pp. 115–119. https://doi.org/10.7897/2230-8407.08584
dc.relation.isbasedonHiremath L., Narendra Kumar S., and Sukanya P., “Development of antimicrobial smart textiles fabricated with magnetite nano particles obtained through green synthesis,” Mater Today Proc, 5(10), 2018, pp. 21030– 21039. https://doi.org/10.1016/j.matpr.2018.06.496
dc.relation.isbasedonAnwar Y. and Alghamdi K. M.: Imparting antibacterial, antifungal and catalytic properties to cotton cloth surface via green route, Polym Test, 81, 2020, p.106258. https://doi.org/10.1016/j.polymertesting.2019.106258
dc.relation.isbasedonAnwar Y. and Alghamdi K. M.: Imparting antibacterial, antifungal and catalytic properties to cotton cloth surface via green route, Polym Test, 81, 2020, p.106258. https://doi.org/10.1016/j.polymertesting.2019.106258
dc.relation.isbasedonVerma Assistant Professor M., Yadav S., Verma M, and Rose N. M.: Assessment of total phenolic content and antimicrobial activity of plants leaves extract, 819, Journal of Pharmacognosy and Phytochemistry, 10(1), 2021, pp. 819–823.
dc.relation.isbasedonAhmed S., Annu, Chaudhry S. A., and Ikram S.: A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry, J Photochem Photobiol B, 166, 2017, pp. 272– 284. https://doi.org/10.1016/j.jphotobiol.2016.12.011
dc.relation.isbasedonShahid-ul-Islam and Butola B. S.: A synergistic combination of shrimp shell derived chitosan polysaccharide with Citrus sinensis peel extract for the development of colourful and bioactive cellulosic textile, Int J Biol Macromol, 158, 2020, pp. 94–103. https://doi.org/10.1016/j.ijbiomac.2020.04.209
dc.relation.isbasedonYi E. and Yoo E. S., A novel bioactive fabric dyed with unripe Citrus grandis Osbeck extract part 1: Dyeing properties and antimicrobial activity on cotton knit fabrics, Textile Research Journal, 80(20), 2010, pp. 2117–2123. https://doi.org/10.1177/0040517510373633
dc.relation.isbasedonSachidhanandham A., Textiles from orange peel waste, Science and Technology Development Journal, 23(2), 2020. https://doi.org/10.32508/stdj.v23i2.1730
dc.relation.isbasedonAnwar Y., Ullah I., Ul-Islam M, et al.: Adopting a green method for the synthesis of gold nanoparticles on cotton cloth for antimicrobial and environmental applications, Arabian Journal of Chemistry, 14(9), 2021, p. 103327. https://doi.org/10.1016/j.arabjc.2021.103327
dc.relation.isbasedonPinho E., Magalhães L., Henriques M., and Oliveira R.: Antimicrobial activity assessment of textiles: standard methods comparison, Ann Microbiol, 61(3), 2011, pp. 493– 498. https://doi.org/10.1007/s13213-010-0163-8
dc.relation.isbasedonISO 20645: Textile Fabrics - Determination of antimicrobial activity - Agar diffusion plate test from International Organization for Standardization, 2004.
dc.relation.isbasedonPinho E., Magalhães L., Henriques M., and Oliveira R.: Antimicrobial activity assessment of textiles: standard methods comparison, Ann Microbiol, 61(3), Sep. 2011, pp. 493–498. https://doi.org/10.1007/s13213-010-0163-8
dc.relation.isbasedonRodriguez C. et al.: Antibacterial effects of photocatalytic textiles for footwear application, Catal Today, 23, 2014, pp. 41–46. https://doi.org/10.1016/j.cattod.2013.12.023
dc.relation.isbasedonZhao X., Min J., and He J., Effect of microwave curing on antimicrobial activity of chitosan biguanidine hydrochloride treated wool fabrics, Journal of the Textile Institute, 102(9), 2011, pp. 801–807. https://doi.org/10.1080/00405000.2010.522047
dc.relation.isbasedonStalons D. R. and Thornsberry C.: Broth-dilution method for determining the antibiotic susceptibility of anaerobic bacteria, Antimicrob Agents Chemother, 7(1), 1975, pp. 15–21. https://doi.org/10.1128/AAC.7.1.15
dc.relation.isbasedonJönsson A., Jacobsson S., Foerster S., et al.: Performance characteristics of newer MIC gradient strip tests compared with the test for antimicrobial susceptibility testing of Neisseria gonorrhoeae, Apmis, 126, (10),2018, pp. 822– 827. https://doi.org/10.1111/apm.12887
dc.relation.isbasedonKeller A. A. et al.: Comparative environmental fate and toxicity of copper nanomaterials,” NanoImpact, 7, Jul. 2017, pp. 28–40. https://doi: 10.1016/j.impact.2017.05.003
dc.relation.ispartofFibres and Textiles
dc.subjectNanotechnologycs
dc.subjectNanoparticlescs
dc.subjectGreen synthesiscs
dc.subjectCitrus plantscs
dc.subjectAntimicrobial Textilescs
dc.titleANTIMICROBIAL ACTIVITY OF COTTON FIBRES TREATED WITH PARTICLES EXTRACTED FROM CITRUS PLANTS: A REVIEWen
dc.typeArticleen
local.accessopen access
local.citation.epage90
local.citation.spage74
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue2
local.relation.volume30
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2023_2_8.pdf
Size:
965.64 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections