SPECTROKINETIC INVESTIGATION OF THE PHOTOCHROMIC SYSTEM UNDER CONTINUOUS UV IRRADIANCE USING REFLECTANCE VS. TIME CURVES
dc.contributor.author | Solanki, Utkarshsinh B. | |
dc.contributor.author | Viková, Martina | |
dc.contributor.author | Vik, Michal | |
dc.contributor.organization | Technická univerzita v Liberci | |
dc.date.accessioned | 2024-10-01T09:40:44Z | |
dc.date.available | 2024-10-01T09:40:44Z | |
dc.description.abstract | The photochromic properties of the dye 5-chloro-1,3,3-trimethylspiro[indoline-2,3'-[3H] naphtho[2,1-b] [1,4]- oxazine] were investigated by exposing it to continuous monochromatic irradiation using 360 nm ultraviolet irradiation using photochromic prints at 293.15 2 K; it undergoes a photocoloration and photodecoloration state, thus following the dynamics of a photochromic cycle of growth and decay phase, respectively. Even if the isolated photo isomeric form of the photochromic dye structure is unavailable, one can quantitatively analyse the photo-induced kinetics of photochromic systems using the raw reflectance data. The quantum colour yield is represented by colour span values [K/S] obtained by converting reflectance data to Kubelka- Munk values. The dynamics of the photoreaction in a photochromic system can be examined by analysing the constants for the rate of colouration and decolouration caused by light. By employing first-order kinetics, the dependent dominant wavelength [max] can be determined by fitting the raw data obtained as a change in reflectance values from the FOTOCHROM3 spectrophotometer. The relationship between the colour span values and the concentration of the photochromic dye employed in the photochromic prints is linear. | cs |
dc.format | text | |
dc.format.extent | 7 stran | |
dc.identifier.doi | 10.15240/tul/008/2024-2-005 | |
dc.identifier.issn | 1335-0617 | |
dc.identifier.uri | https://dspace.tul.cz/handle/15240/175348 | |
dc.language.iso | cs | cs |
dc.publisher | Technical University of Liberec | |
dc.publisher.abbreviation | TUL | |
dc.relation.isbasedon | Pimienta V., Frouté C., Deniel M.H., et al.: Kinetic modelling of the photochromism and photodegradation of a spiro [indoline-naphthoxazine]. Journal of Photochemistry and Photobiology A: Chemistry, 122(3), 1999, pp. 199-204. https://doi.org/10.1016/S1010-6030(99)00023-4 | |
dc.relation.isbasedon | Biteau J., Chaput F., Boilot J.P.: Photochromism of spirooxazine-doped gels. The Journal of Physical Chemistry, 100(21), 1996, pp. 9024-9031. https://doi.org/10.1021/jp953607o | |
dc.relation.isbasedon | Vik M., Periyasamy A.P.: Chromic materials: fundamentals, measurements, and applications. CRC Press, 2018 | |
dc.relation.isbasedon | Little A.F., Christie R.M.: Textile applications of photochromic dyes. Part 2: factors affecting the photocoloration of textiles screen ‐ printed with commercial photochromic dyes. Coloration Technology, 126(3), 2010, pp. 164-170. https://doi.org/10.1111/j.1478-4408.2010.00242.x | |
dc.relation.isbasedon | Little A.F., Christie R.M.: Textile applications of photochromic dyes. Part 3: factors affecting the technical performance of textiles screen‐printed with commercial photochromic dyes. Coloration Technology, 127(5), 2011, pp. 275-281. https://doi.org/10.1111/j.1478-4408.2011.00307.x | |
dc.relation.isbasedon | Viková M.: Photochromic Textiles, Heriot-Watt University, Scottish Borders Campus, Edinburgh, UK, 2011, pp. 53–147. http://hdl.handle.net/10399/2439 | |
dc.relation.isbasedon | Vikova M., Vik M.: Photochromic textiles and measurement of their temperature sensitivity. Research Journal of Textile and Apparel, 18(3), 2014, pp. 15-21. https://doi.org/10.1108/RJTA-18-03-2014-B002 | |
dc.relation.isbasedon | Solanki U., Vikova M.: FATIGUE STUDY OF SPIRO [INDOLINE-NAPTHOOXAZINES] PIGMENT USING COLORIMETRIC DATA IN A CONTINUOUS MODE OF UV IRRADIANCE. Fibres and Textiles, 28(4), 2021, pp. 93-101. http://vat.ft.tul.cz/2021/4/VaT_2021_4_13.pdf | |
dc.relation.isbasedon | Solanki U., Viková M., Vik M.: New Method for Prediction of Photochromic Textiles Fatigue Behavior. In Materials Science Forum. Trans Tech Publications Ltd, 1063, 2022, pp. 163-172 https://doi.org/10.4028/p-ld65c6 | |
dc.relation.isbasedon | Pimienta V., Lavabre D., Levy G., et al.: Kinetic analysis of photochromic systems under continuous irradiation. Application to spiropyrans. The Journal of Physical Chemistry, 100(11), 1996, pp. 4485-4490. https://doi.org/10.1021/jp9531117 | |
dc.relation.isbasedon | Bouas-Laurent H., Dürr H.: Organic photochromism (IUPAC technical report). Pure and Applied Chemistry, 73(4), 2001, pp. 639-665. https://doi.org/10.1351/pac200173040639 | |
dc.relation.isbasedon | Maafi M.: Useful spectrokinetic methods for the investigation of photochromic and thermo-photochromic spiropyrans. Molecules, 13(9), 2008, pp. 2260-2302. https://doi.org/10.3390/molecules13092260 | |
dc.relation.isbasedon | Seipel S., Yu J., Periyasamy A. P., et al.: Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications. RSC advances, 8(50), 2018, pp. 28395-28404. https://doi.org/10.1039/C8RA05856C | |
dc.relation.isbasedon | Seipel S., Yu J., Viková M., et al.: Color performance, durability and handle of inkjet-printed and UV-cured photochromic textiles for multi-colored applications. Fibers and Polymers, 20, 2019, pp.1424-1435. https://link.springer.com/article/10.1007/s12221-019-1039-6 | |
dc.relation.isbasedon | Kellmann A., Tfibel F., Dubest R., et al.: Photophysics and kinetics of two photochromic indolinospirooxazines and one indolinospironaphthopyran. Journal of Photochemistry and Photobiology A: Chemistry, 49(1-2), 1989, pp. 63-73. https://doi.org/10.1016/1010-6030(89)87106-0 | |
dc.relation.isbasedon | Bär R., Gauglitz G.: Limitations to the kinetic analysis of thermoreversible photoreactions of photochromic systems. Journal of Photochemistry and Photobiology A: Chemistry, 46(1), 1989, pp. 15-26. https://doi.org/10.1016/1010-6030(89)87029-7 | |
dc.relation.isbasedon | Pimienta V., Micheau J.C.: Kinetic analysis of photoreversible photochromic systems under continuous monochromatic irradiation from Abs. vs time curves. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 344(1), 2000, pp. 157-162. https://doi.org/10.1080/10587250008023830 | |
dc.relation.isbasedon | Pimienta V., Lavabre D., Levy G., et al.: Kinetic analysis of photochromic systems under continuous irradiation. Application to spiropyrans. The Journal of Physical Chemistry, 100(11), 1996, pp. 4485-4490. https://doi.org/10.1021/jp9531117 | |
dc.relation.isbasedon | Chowdhury M.A., Joshi M., Butola B.S.: Photochromic and thermochromic colorants in textile applications. Journal of Engineered Fibers and Fabrics, 9(1), 2014, 155892501400900113. https://doi.org/10.1177/155892501400900113 | |
dc.relation.isbasedon | Luccioni-Houzé B., Campredon M., Guglielmetti R., et al.: Kinetic analysis of fluoro-[2H]-chromenes at the photostationary states. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 297(1), 1997, pp. 161-165. https://doi.org/10.1080/10587259708036117 | |
dc.relation.isbasedon | Ottavi G., Favaro G., Malatesta V.: Spectrokinetic study of 2, 2-diphenyl-5, 6-benzo (2H) chromene: a thermoreversible and photoreversible photochromic system. Journal of Photochemistry and Photobiology A: Chemistry, 115(2), 1998, pp. 123-128. https://doi.org/10.1016/S1010-6030(98)00254-8 | |
dc.relation.isbasedon | Parhizkar M., Zhao Y., Wang X., et al.: Photostability and durability properties of photochromic organosilica coating on fabric. Journal of Engineered Fibers and Fabrics, 9(3), 2014, 155892501400900308. https://doi.org/10.1177/155892501400900308 | |
dc.relation.isbasedon | Gaeva E.B., Pimienta V., Delbaere S., et al.: Spectral and kinetic properties of a red–blue pH-sensitive photochromic spirooxazine. Journal of Photochemistry and Photobiology A: Chemistry, 191(2-3), 2007, pp. 114-121. https://doi.org/10.1016/j.jphotochem.2007.04.011 | |
dc.relation.isbasedon | Deniel M.H., Lavabre D., Micheau J.C.: Photokinetics under continuous irradiation. In Organic photochromic and thermochromic compounds: Volume 2: Physicochemical studies, biological applications, and thermochromism. Boston, MA: Springer US, 2002, pp. 167-209. https://link.springer.com/chapter/10.1007/0-306-46912-X_4 | |
dc.relation.ispartof | Fibres and Textiles | |
dc.subject | Photokinetics | cs |
dc.subject | Photochromic system | cs |
dc.subject | Spiroxazine dye | cs |
dc.subject | Colour span values | cs |
dc.subject | UV irradiance | cs |
dc.title | SPECTROKINETIC INVESTIGATION OF THE PHOTOCHROMIC SYSTEM UNDER CONTINUOUS UV IRRADIANCE USING REFLECTANCE VS. TIME CURVES | en |
dc.type | Article | en |
local.access | open access | |
local.citation.epage | 41 | |
local.citation.spage | 35 | |
local.faculty | Faculty of Textile Engineering | en |
local.fulltext | yes | en |
local.relation.issue | 2 | |
local.relation.volume | 31 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- VaT_2024_2_5.pdf
- Size:
- 529.05 KB
- Format:
- Adobe Portable Document Format
- Description:
- článek