Testování Fe-Zn nanoslitin jako udržitelných katalyzátorů pro odstraňování antibiotických kontaminantů z vody
Loading...
Date
2025-06-10
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Kontaminace vodních zdrojů rezidui antibiotik představuje závažný environmentální problém, který přispívá k šíření antibiotické rezistence. Mezi těmito polutanty patří sulfamethoxazol (SMX) k nejčastěji detekovaným antibiotikům ve vodním prostředí. Jeho perzistence a odolnost vůči biodegradaci znamenají dlouhodobé riziko pro ekosystémy i lidské zdraví, proto byl zvolen jako modelový kontaminant této práce. Cílem bylo vyvinout a otestovat nový nanokatalyzátor pro snížení kontaminace vody SMX.
K syntéze FeZn nanočástic (NPs) byla použita metoda reaktivní laserové ablace v kapalinách (RLAL), známá svou univerzálností a škálovatelností. Výsledné NPs kombinovaly magnetické vlastnosti Fe s fotokatalytickými vlastnostmi Zn a byly testovány jako fotokatalyzátory pro degradaci SMX. Syntéza probíhala pomocí femtosekundového pulzního laseru v roztocích s různými koncentracemi octanu zinečnatého (0,5-2 mM). NPs byly charakterizovány pomocí analytických metod pro stanovení jejich složení, velikosti, stability a optoelektronických vlastností. Fotokatalytická účinnost byla hodnocena sledováním poklesu koncentrace SMX v čase. Nejvýznamnějším zjištěním této práce je, že NPs syntetizované při koncentraci 1 mM octanu zinečnatého vykazovaly nejvyšší degradační účinnost. Tento výsledek je přičítán optimálnímu poměru Fe:Zn a příznivým charakteristikám pásové struktury. Kromě toho byla degradace výrazně zrychlena při UV osvětlení, což je v souladu s fotokatalytickým mechanismem, a během několika hodin byl pozorován výrazný pokles koncentrace SMX. Mechanismus degradace pravděpodobně zahrnuje tvorbu reaktivních druhů, (hydroxylové a superoxidové radikály) iniciovaných fotoexcitovanými elektrony v NPs. Zjištění tedy ukazují, že FeZn NPs připravené metodou RLAL představují slibný přístup k odstranění reziduí antibiotik z vody. Jejich využití by mohlo přispět k rozvoji udržitelných technologií úpravy vody a ke snížení environmentálních rizik spojených s farmaceutickými polutanty.
Contamination of water sources with antibiotic residues represents a serious environmental issue that contributes to the spread of antibiotic resistance. Among these pollutants, sulfamethoxazole (SMX) is one of the most frequently detected antibiotics in aquatic environments. Its persistence and resistance to biodegradation pose a long-term risk to both ecosystems and human health; therefore, it was selected as the model contaminant in this study. The aim of this work was to develop and test a novel nanocatalyst for reducing SMX contamination in water. FeZn nanoparticles (NPs) were synthesized using the reactive laser ablation in liquids (RLAL) method, known for its versatility and scalability. The resulting NPs combined the magnetic properties of Fe with the photocatalytic properties of Zn and were tested as photocatalysts for SMX degradation. The synthesis was carried out using a femtosecond pulsed laser in solutions containing various concentrations of zinc acetate (0.5-2 mM). The NPs were characterized by various analytical techniques to determine their chemical composition, size, stability, and optoelectronic properties. The photocat alytic efficiency was evaluated by monitoring the decrease in SMX concentration over time. The most significant finding of this study is that NPs synthesized at a concentration of 1 mM Zn acetate showed the highest degradation efficiency. This result is attributed to the optimal Fe:Zn ratio and favorable band structure characteristics. Additionally, the degradation was significantly accelerated under UV irradiation, consistent with the photocatalytic mecha nism, and a marked decrease in SMX concentration was observed within several hours. The degradation mechanism likely involves the formation of reactive species (hydroxyl and superoxide radicals) initiated by photoexcited electrons in the NPs. These findings suggest that FeZn NPs prepared via the RLAL method represent a promising approach for the removal of antibiotic residues from water. Their application could contribute to the development of sustainable water treatment technologies and the reduction of environmental risks associated with pharmaceutical pollutants.
Contamination of water sources with antibiotic residues represents a serious environmental issue that contributes to the spread of antibiotic resistance. Among these pollutants, sulfamethoxazole (SMX) is one of the most frequently detected antibiotics in aquatic environments. Its persistence and resistance to biodegradation pose a long-term risk to both ecosystems and human health; therefore, it was selected as the model contaminant in this study. The aim of this work was to develop and test a novel nanocatalyst for reducing SMX contamination in water. FeZn nanoparticles (NPs) were synthesized using the reactive laser ablation in liquids (RLAL) method, known for its versatility and scalability. The resulting NPs combined the magnetic properties of Fe with the photocatalytic properties of Zn and were tested as photocatalysts for SMX degradation. The synthesis was carried out using a femtosecond pulsed laser in solutions containing various concentrations of zinc acetate (0.5-2 mM). The NPs were characterized by various analytical techniques to determine their chemical composition, size, stability, and optoelectronic properties. The photocat alytic efficiency was evaluated by monitoring the decrease in SMX concentration over time. The most significant finding of this study is that NPs synthesized at a concentration of 1 mM Zn acetate showed the highest degradation efficiency. This result is attributed to the optimal Fe:Zn ratio and favorable band structure characteristics. Additionally, the degradation was significantly accelerated under UV irradiation, consistent with the photocatalytic mecha nism, and a marked decrease in SMX concentration was observed within several hours. The degradation mechanism likely involves the formation of reactive species (hydroxyl and superoxide radicals) initiated by photoexcited electrons in the NPs. These findings suggest that FeZn NPs prepared via the RLAL method represent a promising approach for the removal of antibiotic residues from water. Their application could contribute to the development of sustainable water treatment technologies and the reduction of environmental risks associated with pharmaceutical pollutants.
Description
Subject(s)
Fe-Zn nanočástice, fotokatalýza, sulfamethoxazol, reaktivní laserová ablace v kapalinách, antibiotická rezistence