Domination in bipartite graphs and in their complements
dc.contributor.author | Zelinka, Bohdan | |
dc.date.accessioned | 2015-10-26 | |
dc.date.available | 2015-10-26 | |
dc.date.issued | 2015-01-01 | |
dc.description.abstract | The domatic numbers of a graph G and of its complement G were studied by J. E. Dunbar, T. W. Haynes and M. A. Henning. They suggested four open problems. We will solve the following ones: Characterize bipartite graphs G having d(G) = d(Ḡ). Further, we will present a partial solution to the problem: Is it true that if G is a graph satisfying d(G) = d(Ḡ), then γ(G) = γ(Ḡ)? Finally, we prove an existence theorem concerning the total domatic number of a graph and of its complement. | en |
dc.format | text | |
dc.format | text | |
dc.identifier.doi | 10.1016/j.physletb.2015.03.056 | |
dc.identifier.doi | 10.1023/A:1026266816053 | |
dc.identifier.issn | 0370-2693 | |
dc.identifier.issn | 0011-4642 | |
dc.identifier.scopus | 2-s2.0-84927722335 | |
dc.identifier.scopus | 2-s2.0-0041738904 | |
dc.identifier.uri | https://dspace.tul.cz/handle/15240/16326 | |
dc.identifier.uri | https://dspace.tul.cz/handle/15240/13327 | |
dc.language.iso | en | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.publisher | Technical university of Liberec, Czech Republic | en |
dc.publisher | Technická Univerzita v Liberci | cs |
dc.relation.ispartof | Czechoslovak Mathematical Journal | en |
dc.source | j-scopus | |
dc.source | j-wok | |
dc.source | j-scopus | |
dc.subject | bipartite graph | en |
dc.subject | complement of a graph | en |
dc.subject | domatic number | en |
dc.title | Domination in bipartite graphs and in their complements | en |
dc.type | Article | |
dc.type | Article | |
local.access | οpen | |
local.citation.epage | 259 | |
local.citation.epage | 247 | |
local.citation.spage | 241 | |
local.department | Department of Physics | |
local.faculty | Faculty of Sciences, Humanities and Education | |
local.identifier.coden | PYLBA | |
local.identifier.wok | 353892000039 | |
local.relation.issue | 2 | |
local.relation.volume | 53 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2-s2.0-0041738904.pdf
- Size:
- 99.3 KB
- Format:
- Adobe Portable Document Format
- Description: