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Abstract. The domatic numbers of a graph G and of its complementG were studied by
J. E. Dunbar, T.W. Haynes and M.A. Henning. They suggested four open problems. We
will solve the following ones:

Characterize bipartite graphs G having d(G) = d(G).

Further, we will present a partial solution to the problem:

Is it true that if G is a graph satisfying d(G) = d(G), then γ(G) = γ(G)?

Finally, we prove an existence theorem concerning the total domatic number of a graph
and of its complement.
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We consider finite undirected graphs without loops and multiple edges. Mostly we

treat bipartite graphs. The bipartition classes of such a graph will be denoted by P

and Q and their cardinalities by p and q respectively; the notation will be chosen so

that p > q. By NG(x) we denote the open neighbourhood of a vertex x in a graph G,

i.e. the set of all vertices which are adjacent to x in G.

A subset D of the vertex set V (G) of a graph G is called dominating (or total

dominating) in G, if for each x ∈ V (G)−D (or for each x ∈ V (G), respectively) there

exists y ∈ D adjacent to x. A domatic (or total domatic) partition of G is a partition

of V (G), all of whose classes are dominating (or total dominating, respectively) sets

in G. The domination number (or total domination number) of G is the minimum

number of vertices of a dominating (or total dominating, respectively) set in G. The

domatic [1] (or total domatic [2]) number of G is the maximum number of classes of

a domatic (or total domatic, respectively) partition of G. The domination number
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of G is denoted by γ(G), its total domination number by γt(G), its domatic number

by d(G), its total domatic number by dt(G).

Before solving the first mentioned problem we exclude certain cases.

Lemma 1. Let G be a graph with an isolated vertex. Then d(G) 6= d(G).

���	�����
. Let v be an isolated vertex in G. It is contained in all dominating sets

in G and thus no two of them may be disjoint and d(G) = 1. In G there exists the

domatic partition {{v}, V (G) − {v}} and thus d(G) = 2. �

If q = 1 for a bipartite graph G, then either G or G has an isolated vertex.

Therefore the following proposition holds.

Proposition. Let G be a bipartite graph in which one bipartition class consists

of one element. Then d(G) 6= d(G).

Lemma 2. Let G be a bipartite graph with bipartition classes P , Q, let p = |p|,

q = |Q|, p > q > 2. Then d(G) 6 q 6 d(G).

���	�����
. No proper subset of P or of Q is dominating in G. Therefore if D is a

dominating set in G, then either D = P , or D = Q, or D ∩ P 6= 0 and D ∩ Q 6= 0.

A domatic partition of G is either {P, Q}, therefore with two classes, or has the

property that each of its classes has a non-empty intersection with Q and thus it

has at most q classes; this implies d(G) 6 q. In the complement G the sets P , Q

induce complete subgraphs and therefore each union of a non-empty subset of P and

a non-empty subset of Q is dominating in G. We have p > q and therefore there

exists a partition {M1, . . . , Mq} of P with Q classes. If Q = {y1, . . . , yq}, we may

take the partition {M1∪{y1}, . . . , Mq∪{yq}} of V (G) and this is a domatic partition

of G. Therefore q 6 d(G). �

Now we prove a theorem.

Theorem 1. Let G be a bipartite graph without isolated vertices and with bi-

partition classes P , Q, let p = |P |, q = |Q|, p > q > 2. The equality d(G) = d(G)

holds if and only if the following conditions are satisfied:

(i) The degree of each vertex of P in G is at least q − 1.

(ii) The number of vertices of P of degree q is greater than or equal to the number

of vertices of Q of degree p.

(iii) Either p 6 2q − 1, or there exists at least one vertex of Q of degree p.

���	�����
. Let the conditions (i), (ii), (iii) hold. Let y1, . . . , yq be the vertices

of Q. Let M0 = {x ∈ P | NG(x) = Q} and Mi = {x ∈ P | yi 6∈ NG(x)}
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for i = 1, . . . , q. The condition (i) implies that the sets M0, M1, . . . , Mq are pair-

wise disjoint; some of them may be empty. Let J0 = {i ∈ {1, . . . , q} | Mi = 0},

J1 = {i ∈ {1, . . . , q} | Mi 6= 0}. For i ∈ J0 the vertex xi is adjacent to all ver-

tices of P and its degree is p. By (ii) we have |M0| > |J0| and thus there ex-

ists a partition {Li | i ∈ J0} of M0. Now define sets Di for i = 1, . . . , q. If

i ∈ J0, then Di = Li ∪ {yi}. If i ∈ J1, then Di = Mi ∪ {yi}. The parti-

tion D = {D1, . . . , Dq} is a domatic partition of G and thus d(G) > q and, by

Lemma 2, d(G) = q. The partition D is also a domatic partition of G and thus

d(G) > q. Suppose that d(G) > q + 1 and let D′ be the corresponding domatic

partition of G. At most q classes of D′ may have non-empty intersections with Q

and therefore there exists a class D′ of D′ which is a subset of P . Each vertex

of Q is adjacent in G and thus non-adjacent in G to a vertex of D′. If there ex-

ists a vertex of Q of degree p (condition (iii)), then this vertex is adjacent in G

to all vertices of P and thus also to all of D′, which is a contradiction. If such a

vertex does not exist, then p 6 2q − 1 by (iii). By (i) each vertex of D′ is adja-

cent in G to at most one vertex of Q (to exactly one, if D′ is minimal with respect

to inclusion), therefore |D′| 6 q. No proper subset of Q is dominating in G, be-

cause for each vertex of Q there exists a vertex of D′ adjacent in G only to it.

Hence each class of D′ has a non-empty intersection with P . As D′ contains at

least q vertices of P , the number of all other classes of D′ is at most p − q and

|D′| 6 p− q + 1. By (iii) then |D′| 6 q, which is a contradiction. Therefore d(G) = q

and d(G) = d(G).

Now suppose that (i) does not hold. There exists a vertex x0 ∈ P whose degree is

at most q−2 and therefore there exist vertices y1 ∈ Q, y2 ∈ Q which are not adjacent

to x0. Suppose that d(G) = q and let D = D1, . . . , Dq be the corresponding domatic

partition. Each class of D has exactly one element in common with Q; without loss

of generality let D1 ∩Q = y1, D2 ∩Q = y2. But then both D1, D2 must contain x0,

which is a contradiction. Therefore d(G) < q 6 d(G).

Suppose that (ii) does not hold; by our notation this means |M0| < |J0|. Suppose

that d(G) = q and let D = {D1, . . . , Dq} be the corresponding partition. We use the

notation Q = {y1, . . . , yq} and without loss of generality we suppose that Di ∩ Q =

{yi} for i = 1, . . . , q. If i ∈ J1, then Mi ⊆ Di − {yi}. Therefore if i ∈ J0, then

Di ∩ P ⊆ M0. As |M0| < |J0| and all these intersections must be non-empty and

pairwise disjoint, we have a contradiction. Therefore again d(G) < q 6 d(G).

Now suppose that (iii) does not hold; therefore p > 2q and J0 = ∅, which means

Mi 6= ∅ for each i ∈ {1, . . . , q}. In each Mi we choose a vertex xi and denote

A = {x1, . . . , xq}. In G the vertices xi, yi are adjacent for each i ∈ {1, . . . , q},

therefore A is a dominating set in G. As p > 2q, the set P −A has at least q elements

and we may choose a partition {S1, . . . , Sq} of P−A with q classes. Evidently Si∪{yi}
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is a dominating set in G for each i ∈ {1, . . . , q} and {A, S1 ∪ {y1}, . . . , Sq ∪ {yq}} is

a domatic partition of G. We have d(G) > q + 1 > q > d(G). �

The problem whether d(G) = d(G) implies γ(G) = γ(G) will be solved only for

bipartite graphs.

Theorem 2. Let G be a bipartite graph such that d(G) = d(G). Then γ(G) =

γ(G).
���	�����

. Again we may restrict our considerations to graphs with q > 2 and

without isolated vertices. According to Theorem 1 the equality d(G) = d(G) implies

the validity of the conditions (i), (ii), (iii) and d(G) = d(G) = q. If there exists

at least one vertex y ∈ Q of degree p, then by (ii) there exists at least one vertex

x ∈ P of degree q. The set {x, y} is dominating in G. We have q > 2 and therefore

no one-element set may be dominating in G and γ(G) = 2. If vertex y exists, then

p 6 2q− 1 must hold by (iii). We use the notation from the proof of Theorem 1. We

have Mi 6= ∅ for all i ∈ {1, . . . , q}. As the sets Mi are pairwise disjoint subsets of P

and p 6 2q − 1, there exists some j ∈ {1, . . . , q} such that |Mj | = 1. Let Mj = {x}.

The set {x, yj} is dominating in G and γ(G) = 2. In the graph G each two-element

set consisting of a vertex of P and a vertex of Q is dominating, because P and Q

induce complete subgraphs of G. No vertex is adjacent in G to all others, because

such a vertex would be isolated in G. Therefore γ(G) = 2 = γ(G). �

In the case of the total domatic number the situation is more complicated. We will

give a full characterization only for the case q = 2; for a general case we will prove

only an existence theorem. From our considerations we must exclude graphs with

isolated vertices, because for them the total domatic number is not well-defined. In

particular, for bipartite graphs we exclude the case q = 1, because in this case the

complement contains an isolated vertex.

For q = 2 we can give a full characterization.

Theorem 3. Let G be a bipartite graph without isolated vertices and with bi-

partition classes P , Q, let p = |P |, q = |Q| = 2, p > 2. The equality dt(G) = dt(G)

holds if and only if exactly one vertex of Q has degree p.

���	�����
. Let Q = {y1, y2}. Suppose (without loss of generality) that y1 has

degree p, while y2 has not. Then there exists a vertex x ∈ P non-adjacent to y2. Its

degree in G is 1. In [2] it is stated that dt(G) cannot exceed the minimum degree

of a vertex in G and therefore dt(G) = 1. In G the vertex y1 has degree 1 and thus

dt(G) = 1 and dt(G) = dt(G).

If none of the vertices of Q has degree p, then there exists a vertex x1 ∈ P non-

adjacent to y1 and a vertex x2 ∈ P non-adjacent to y2. We have x1 6= x2, otherwise
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this vertex would be isolated. Both x1, x2 have degree 1 and thus dt(G) = 1. If

we put D1 = {x1, y1}, D2 = (A − {x1}) ∪ {y2}, then {D1, D2} is a total domatic

partition of G and thus dt(G) > 2 and dt(G) 6= dt(G). If both vertices of Q have

degree p, then choose x ∈ P and put D′

1 = {x, y1}, D′

2 = (A − {x}) ∪ {y1}. The

partition {D′

1, D
′

2} is domatic in G and thus dt(G) = 2 (the degrees of vertices of P

are equal to 2). In G both vertices of Q have degree 1 and thus dt(G) = 1 and

dt(G) 6= dt(G). �

Now we prove a lemma.

Lemma 3. Let G be a bipartite graph without isolated vertices and with bipar-

tition classes P , Q, let p = |P |, q = |Q|, p > q > 2. Then d(G) > b 1
2qc.

���	�����
. The sets P , Q induce complete subgraphs in G. Denote r = b 1

2qc.

Choose an arbitrary partition {Q1, . . . , Qr} of Q such that at most one class has

three elements and all others have two elements each; such a partition has r classes.

As p > q, also p can be partitioned into r classes, each of which has at least two

elements. Let this partition be {P1, . . . , Pr}. Then {P1 ∪ Q1, . . . , Pr ∪ Qr} is a

domatic partition of G, which implies the assertion. �

Now we prove the existence theorem.

Theorem 4. Let p, q, s be positive integers, p > q > 3. There exists a bipartite

graph G with the bipartition classes P , Q such that |P | = p, |Q| = q and dt(G) =

dt(G) = s if and only if 1
2q 6 s 6 3

4q.

���	�����
. Let 1

2q 6 s 6 3
4q. First we shall investigate the case s = 1

2q; then

obviously q is even. Denote r = 1
2q. Take two disjoint sets P = {x1, . . . , xp},

Q = {y1, . . . , yp}; the vertex set of G will be V (G) = P ∪ Q. Join each vertex

of P with each vertex of Q by an edge, except the pairs {x1, yi} for i = 1, . . . , r.

Thus G is constructed. The vertex x1 has degree
1
2q and thus dt(G) 6 1

2q. Put

Di = {xr+i, yr+i} for i = 1, . . . , r − 1 and dr = V (G) −
r−1⋃

i=1

Di. The partition

{D1, . . . , Dr} is total domatic in G and thus dt(G) = r = 1
2q. In G no subset

of P is total dominating and thus each total dominating set in G has a non-empty

intersection with Q. If this intersection consists of one element, then this element

must be some of the vertices y1, . . . , yr and moreover this total dominating set must

contain a vertex of P adjacent to this vertex; such a vertex is only x1. Therefore a

total domatic partition of G can contain at most one class having only one vertex

in common with Q, all others must have at least two. The number of classes is at

most r and dt(G) 6 r. There exists the same total domatic partition of G as in the

proof of Lemma 3 and thus dt(G) = r = 1
2q and dt(G) = dt(G).
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Now let b 1
2qc + 1 6 3

4q; we will denote r = b 1
2qc. Take again V (G) = P ∪ Q,

where P = {x1, . . . , xp}, Q = {y1, . . . , yq}. Let m = 2s − q; we have 2 6 m 6 r.

We construct first the complement G. It contains the edges xiyi for i = 1, . . . , m

and in addition the edges xiy2m+j , where 1 6 j 6 p− 2m, j ≡ i (mod m), again for

i = 1, . . . , m and for all j satisfying the condition (such j need not exist). Further,

G obviously contains all edges joining two vertices of P and all edges joining two

vertices of Q. In G no subset of P is total dominating and thus each total dominating

set in G must have a non-empty intersection with Q. This intersection may consist

of one vertex, only if this vertex is adjacent in G to a vertex of P ; moreover, the

mentioned total dominating set must contain also a vertex of P adjacent to this

vertex. Only the vertices x1, . . . , xm are adjacent in G to vertices of Q and thus

in each total domatic partition of G at most m classes have one vertex in common

with Q; the others have at least two and the number of classes is at most m +
1
2 (q − m) = s. Therefore dt(G) 6 s. Let Li = {ym+2i−1, ym+2i} for i = 1, . . . ,

s − m. Let {M1, . . . , Ms−m} be an arbitrary partition of P − {x1, . . . , xm} into

s − m classes. Put Di = {xi, yi} for i = 1, . . . , m, Di = Li−m ∪ Mi−m for i =

m + 1, . . . , m + s. The partition {D1, . . . , Ds} is a total domatic partition of G and

dt(G) = s.

Also each total dominating set in G has a non-empty intersection with Q.

It has one vertex in common with Q, only if this vertex has degree p in Q;

otherwise it has at least two. There are m vertices of degree p in Q, namely

ym+1, . . . , y2m. Analogously as in the case of G we have dt(G) 6 m + 1
2 (q −m) = s.

Put Di = {xm+i, ym+i} for i = 1, . . . , m. Further, for q even (and thus also

m even) put Di = {x2(i−m)−1, x2(i−m); y2(i−m)−1, y2(i−m)} for i = m + 1, . . . , 3
2m,

Di = {x2i−m−1, x2i−m, y2i−m−1, y2i−m} for i = 3
2m + 1, . . . , s. For q odd we have

Di = {x2(i−m)−1, x2(i−m), y2(i−m)−1, y2(i−m)} for i = m + 1, . . . , 1
2 (3m − 1), Di =

{xm, x2m+1, ym, y2m+1} for i = 1
2 (3m+1), Di = {x2i−m−1, x2i−m, y2i−m−1, y2i−m}

for i = 1
2 (3m + 1) + 1, . . . , s. Then {D1, . . . , Ds} is a total domatic partition of G

and we have dt(G) = dt(G) = s.

Now consider the cases when a does not satisfy the above mentioned inequality.

By Lemma 3 for s < b 1
2qc the required graph does not exist. For q odd consider the

case s = b 1
2qc = 1

2 (q− 1) < 1
2q. We have dt(G) = s in the case when G is a complete

bipartite graph Kp,q, but then dt(G) = q 6= s. Suppose that G is a bipartite graph

on P , Q with |P | = p, |Q| = q which is not Kp,q. Then there exists x ∈ P and y ∈ Q

such that x, y are non-adjacent in G and thus adjacent in G. Let {L1, . . . , Ls} be a

partition of Q−{y} into two-element sets, let {M1, . . . , Ms} be a partition of P −{x}

into sets with at least two vertices. Put Di = Li∪Mi for i = 1, . . . , s, Ds+1 = {x, y}.

The partition {D1, . . . , Ds+1} is total domatic in G and dt(G) > s+1. This excludes

the case s = 1
2 (q − 1).
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Suppose s > 3
4q. With the notation introduced above, we have m = 2s − q > 1

2q.

As we have seen in the first part of the proof, for dt(G) = s we must have at least

m vertices of degree p in Q; they are non-adjacent to any vertex in G. For dt(G) = s

we must have at least m vertice of Q which are adjacent to some vertex of P in G.

As m > 1
2q, these two conditions cannot be satisfied simultaneously and thus for

s > 3
4q the required graph does not exist. �

At the end we prove a theorem which concerns graphs in general, not only bipartite

graphs.

Theorem 5. No disconnected graph G with dt(G) = dt(G) exists.

���	�����
. Let G be a disconnected graph. If G contains isolated vertices, then

dt(G) is not defined; therefore suppose that G has no isolated vertex. Let H1 be a

connected component of G with the minimum number of vertices; let H2 = G−H1.

Let h be the number of vertices of H1. In G each vertex of H1 is adjacent to each

vertex of H2. Let the vertices of H1 be v1, . . . , vh and choose h pairwise distinct

vertices w1, . . . , wh in H2. Put Di = {vi, wi} for i = 1, . . . , h − 1 and Dh = V (G) −
n−1⋃

i=1

Di. Then {D1, . . . , Dh} is a total domatic partition of G and dt(G) > h. The

total domatic number of G is the minimum of total domatic numbers of the connected

components of G and thus dt(G) 6 dt(H1). Any total dominating set in a graph has

at least two vertices and thus dt(G) 6 dt(H1) 6 1
2h < h 6 d(G). �
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