DOMINATION IN BIPARTITE GRAPHS
 AND IN THEIR COMPLEMENTS

Bohdan Zelinka, Liberec

(Received October 23, 1998)

Abstract

The domatic numbers of a graph G and of its complement \bar{G} were studied by J. E. Dunbar, T. W. Haynes and M. A. Henning. They suggested four open problems. We will solve the following ones:

Characterize bipartite graphs G having $d(G)=d(\bar{G})$. Further, we will present a partial solution to the problem: Is it true that if G is a graph satisfying $d(G)=d(\bar{G})$, then $\gamma(G)=\gamma(\bar{G})$? Finally, we prove an existence theorem concerning the total domatic number of a graph and of its complement.

Keywords: bipartite graph, complement of a graph, domatic number
MSC 2000: 05C69

We consider finite undirected graphs without loops and multiple edges. Mostly we treat bipartite graphs. The bipartition classes of such a graph will be denoted by P and Q and their cardinalities by p and q respectively; the notation will be chosen so that $p \geqslant q$. By $N_{G}(x)$ we denote the open neighbourhood of a vertex x in a graph G, i.e. the set of all vertices which are adjacent to x in G.

A subset D of the vertex set $V(G)$ of a graph G is called dominating (or total dominating) in G, if for each $x \in V(G)-D$ (or for each $x \in V(G)$, respectively) there exists $y \in D$ adjacent to x. A domatic (or total domatic) partition of G is a partition of $V(G)$, all of whose classes are dominating (or total dominating, respectively) sets in G. The domination number (or total domination number) of G is the minimum number of vertices of a dominating (or total dominating, respectively) set in G. The domatic [1] (or total domatic [2]) number of G is the maximum number of classes of a domatic (or total domatic, respectively) partition of G. The domination number
of G is denoted by $\gamma(G)$, its total domination number by $\gamma_{t}(G)$, its domatic number by $d(G)$, its total domatic number by $d_{t}(G)$.

Before solving the first mentioned problem we exclude certain cases.

Lemma 1. Let G be a graph with an isolated vertex. Then $d(G) \neq d(\bar{G})$.
Proof. Let v be an isolated vertex in G. It is contained in all dominating sets in G and thus no two of them may be disjoint and $d(G)=1$. In \bar{G} there exists the domatic partition $\{\{v\}, V(G)-\{v\}\}$ and thus $d(\bar{G})=2$.

If $q=1$ for a bipartite graph G, then either G or \bar{G} has an isolated vertex. Therefore the following proposition holds.

Proposition. Let G be a bipartite graph in which one bipartition class consists of one element. Then $d(G) \neq d(\bar{G})$.

Lemma 2. Let G be a bipartite graph with bipartition classes P, Q, let $p=|p|$, $q=|Q|, p \geqslant q \geqslant 2$. Then $d(G) \leqslant q \leqslant d(\bar{G})$.

Proof. No proper subset of P or of Q is dominating in G. Therefore if D is a dominating set in G, then either $D=P$, or $D=Q$, or $D \cap P \neq 0$ and $D \cap Q \neq 0$. A domatic partition of G is either $\{P, Q\}$, therefore with two classes, or has the property that each of its classes has a non-empty intersection with Q and thus it has at most q classes; this implies $d(G) \leqslant q$. In the complement \bar{G} the sets P, Q induce complete subgraphs and therefore each union of a non-empty subset of P and a non-empty subset of Q is dominating in \bar{G}. We have $p \geqslant q$ and therefore there exists a partition $\left\{M_{1}, \ldots, M_{q}\right\}$ of P with Q classes. If $Q=\left\{y_{1}, \ldots, y_{q}\right\}$, we may take the partition $\left\{M_{1} \cup\left\{y_{1}\right\}, \ldots, M_{q} \cup\left\{y_{q}\right\}\right\}$ of $V(G)$ and this is a domatic partition of G. Therefore $q \leqslant d(\bar{G})$.

Now we prove a theorem.

Theorem 1. Let G be a bipartite graph without isolated vertices and with bipartition classes P, Q, let $p=|P|, q=|Q|, p \geqslant q \geqslant 2$. The equality $d(G)=d(\bar{G})$ holds if and only if the following conditions are satisfied:
(i) The degree of each vertex of P in G is at least $q-1$.
(ii) The number of vertices of P of degree q is greater than or equal to the number of vertices of Q of degree p.
(iii) Either $p \leqslant 2 q-1$, or there exists at least one vertex of Q of degree p.

Proof. Let the conditions (i), (ii), (iii) hold. Let y_{1}, \ldots, y_{q} be the vertices of Q. Let $M_{0}=\left\{x \in P \mid N_{G}(x)=Q\right\}$ and $M_{i}=\left\{x \in P \mid y_{i} \notin N_{G}(x)\right\}$
for $i=1, \ldots, q$. The condition (i) implies that the sets $M_{0}, M_{1}, \ldots, M_{q}$ are pairwise disjoint; some of them may be empty. Let $J_{0}=\left\{i \in\{1, \ldots, q\} \mid M_{i}=0\right\}$, $J_{1}=\left\{i \in\{1, \ldots, q\} \mid M_{i} \neq 0\right\}$. For $i \in J_{0}$ the vertex x_{i} is adjacent to all vertices of P and its degree is p. By (ii) we have $\left|M_{0}\right| \geqslant\left|J_{0}\right|$ and thus there exists a partition $\left\{L_{i} \mid i \in J_{0}\right\}$ of M_{0}. Now define sets D_{i} for $i=1, \ldots, q$. If $i \in J_{0}$, then $D_{i}=L_{i} \cup\left\{y_{i}\right\}$. If $i \in J_{1}$, then $D_{i}=M_{i} \cup\left\{y_{i}\right\}$. The partition $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ is a domatic partition of G and thus $d(G) \geqslant q$ and, by Lemma $2, d(G)=q$. The partition \mathcal{D} is also a domatic partition of \bar{G} and thus $d(\bar{G}) \geqslant q$. Suppose that $d(\bar{G}) \geqslant q+1$ and let \mathcal{D}^{\prime} be the corresponding domatic partition of \bar{G}. At most q classes of \mathcal{D}^{\prime} may have non-empty intersections with Q and therefore there exists a class D^{\prime} of \mathcal{D}^{\prime} which is a subset of P. Each vertex of Q is adjacent in \bar{G} and thus non-adjacent in G to a vertex of D^{\prime}. If there exists a vertex of Q of degree p (condition (iii)), then this vertex is adjacent in G to all vertices of P and thus also to all of D^{\prime}, which is a contradiction. If such a vertex does not exist, then $p \leqslant 2 q-1$ by (iii). By (i) each vertex of D^{\prime} is adjacent in G to at most one vertex of Q (to exactly one, if D^{\prime} is minimal with respect to inclusion), therefore $\left|D^{\prime}\right| \leqslant q$. No proper subset of Q is dominating in G, because for each vertex of Q there exists a vertex of D^{\prime} adjacent in G only to it. Hence each class of \mathcal{D}^{\prime} has a non-empty intersection with P. As D^{\prime} contains at least q vertices of P, the number of all other classes of \mathcal{D}^{\prime} is at most $p-q$ and $\left|\mathcal{D}^{\prime}\right| \leqslant p-q+1$. By (iii) then $\left|\mathcal{D}^{\prime}\right| \leqslant q$, which is a contradiction. Therefore $d(\bar{G})=q$ and $d(G)=d(\bar{G})$.

Now suppose that (i) does not hold. There exists a vertex $x_{0} \in P$ whose degree is at most $q-2$ and therefore there exist vertices $y_{1} \in Q, y_{2} \in Q$ which are not adjacent to x_{0}. Suppose that $d(G)=q$ and let $\mathcal{D}=D_{1}, \ldots, D_{q}$ be the corresponding domatic partition. Each class of \mathcal{D} has exactly one element in common with Q; without loss of generality let $D_{1} \cap Q=y_{1}, D_{2} \cap Q=y_{2}$. But then both D_{1}, D_{2} must contain x_{0}, which is a contradiction. Therefore $d(G)<q \leqslant d(\bar{G})$.

Suppose that (ii) does not hold; by our notation this means $\left|M_{0}\right|<\left|J_{0}\right|$. Suppose that $d(G)=q$ and let $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ be the corresponding partition. We use the notation $Q=\left\{y_{1}, \ldots, y_{q}\right\}$ and without loss of generality we suppose that $D_{i} \cap Q=$ $\left\{y_{i}\right\}$ for $i=1, \ldots, q$. If $i \in J_{1}$, then $M_{i} \subseteq D_{i}-\left\{y_{i}\right\}$. Therefore if $i \in J_{0}$, then $D_{i} \cap P \subseteq M_{0}$. As $\left|M_{0}\right|<\left|J_{0}\right|$ and all these intersections must be non-empty and pairwise disjoint, we have a contradiction. Therefore again $d(G)<q \leqslant d(\bar{G})$.

Now suppose that (iii) does not hold; therefore $p \geqslant 2 q$ and $J_{0}=\emptyset$, which means $M_{i} \neq \emptyset$ for each $i \in\{1, \ldots, q\}$. In each M_{i} we choose a vertex x_{i} and denote $A=\left\{x_{1}, \ldots, x_{q}\right\}$. In G the vertices x_{i}, y_{i} are adjacent for each $i \in\{1, \ldots, q\}$, therefore A is a dominating set in G. As $p \geqslant 2 q$, the set $P-A$ has at least q elements and we may choose a partition $\left\{S_{1}, \ldots, S_{q}\right\}$ of $P-A$ with q classes. Evidently $S_{i} \cup\left\{y_{i}\right\}$
is a dominating set in G for each $i \in\{1, \ldots, q\}$ and $\left\{A, S_{1} \cup\left\{y_{1}\right\}, \ldots, S_{q} \cup\left\{y_{q}\right\}\right\}$ is a domatic partition of G. We have $d(\bar{G}) \geqslant q+1>q \geqslant d(G)$.

The problem whether $d(G)=d(\bar{G})$ implies $\gamma(G)=\gamma(\bar{G})$ will be solved only for bipartite graphs.

Theorem 2. Let G be a bipartite graph such that $d(G)=d(\bar{G})$. Then $\gamma(G)=$ $\gamma(\bar{G})$.

Proof. Again we may restrict our considerations to graphs with $q \geqslant 2$ and without isolated vertices. According to Theorem 1 the equality $d(G)=d(\bar{G})$ implies the validity of the conditions (i), (ii), (iii) and $d(G)=d(\bar{G})=q$. If there exists at least one vertex $y \in Q$ of degree p, then by (ii) there exists at least one vertex $x \in P$ of degree q. The set $\{x, y\}$ is dominating in G. We have $q \geqslant 2$ and therefore no one-element set may be dominating in G and $\gamma(G)=2$. If vertex y exists, then $p \leqslant 2 q-1$ must hold by (iii). We use the notation from the proof of Theorem 1 . We have $M_{i} \neq \emptyset$ for all $i \in\{1, \ldots, q\}$. As the sets M_{i} are pairwise disjoint subsets of P and $p \leqslant 2 q-1$, there exists some $j \in\{1, \ldots, q\}$ such that $\left|M_{j}\right|=1$. Let $M_{j}=\{x\}$. The set $\left\{x, y_{j}\right\}$ is dominating in G and $\gamma(G)=2$. In the graph \bar{G} each two-element set consisting of a vertex of P and a vertex of Q is dominating, because P and Q induce complete subgraphs of \bar{G}. No vertex is adjacent in \bar{G} to all others, because such a vertex would be isolated in G. Therefore $\gamma(\bar{G})=2=\gamma(G)$.

In the case of the total domatic number the situation is more complicated. We will give a full characterization only for the case $q=2$; for a general case we will prove only an existence theorem. From our considerations we must exclude graphs with isolated vertices, because for them the total domatic number is not well-defined. In particular, for bipartite graphs we exclude the case $q=1$, because in this case the complement contains an isolated vertex.

For $q=2$ we can give a full characterization.
Theorem 3. Let G be a bipartite graph without isolated vertices and with bipartition classes P, Q, let $p=|P|, q=|Q|=2, p \geqslant 2$. The equality $d_{t}(G)=d_{t}(\bar{G})$ holds if and only if exactly one vertex of Q has degree p.

Proof. Let $Q=\left\{y_{1}, y_{2}\right\}$. Suppose (without loss of generality) that y_{1} has degree p, while y_{2} has not. Then there exists a vertex $x \in P$ non-adjacent to y_{2}. Its degree in G is 1 . In [2] it is stated that $d_{t}(G)$ cannot exceed the minimum degree of a vertex in G and therefore $d_{t}(G)=1$. In G the vertex y_{1} has degree 1 and thus $d_{t}(G)=1$ and $d_{t}(G)=d_{t}(\bar{G})$.

If none of the vertices of Q has degree p, then there exists a vertex $x_{1} \in P$ nonadjacent to y_{1} and a vertex $x_{2} \in P$ non-adjacent to y_{2}. We have $x_{1} \neq x_{2}$, otherwise
this vertex would be isolated. Both x_{1}, x_{2} have degree 1 and thus $d_{t}(G)=1$. If we put $D_{1}=\left\{x_{1}, y_{1}\right\}, D_{2}=\left(A-\left\{x_{1}\right\}\right) \cup\left\{y_{2}\right\}$, then $\left\{D_{1}, D_{2}\right\}$ is a total domatic partition of \bar{G} and thus $d_{t}(\bar{G}) \geqslant 2$ and $d_{t}(\bar{G}) \neq d_{t}(G)$. If both vertices of Q have degree p, then choose $x \in P$ and put $D_{1}^{\prime}=\left\{x, y_{1}\right\}, D_{2}^{\prime}=(A-\{x\}) \cup\left\{y_{1}\right\}$. The partition $\left\{D_{1}^{\prime}, D_{2}^{\prime}\right\}$ is domatic in G and thus $d_{t}(G)=2$ (the degrees of vertices of P are equal to 2). In \bar{G} both vertices of Q have degree 1 and thus $d_{t}(\bar{G})=1$ and $d_{t}(G) \neq d_{t}(\bar{G})$.

Now we prove a lemma.
Lemma 3. Let G be a bipartite graph without isolated vertices and with bipartition classes P, Q, let $p=|P|, q=|Q|, p \geqslant q \geqslant 2$. Then $d(\bar{G}) \geqslant\left\lfloor\frac{1}{2} q\right\rfloor$.

Proof. The sets P, Q induce complete subgraphs in G. Denote $r=\left\lfloor\frac{1}{2} q\right\rfloor$. Choose an arbitrary partition $\left\{Q_{1}, \ldots, Q_{r}\right\}$ of Q such that at most one class has three elements and all others have two elements each; such a partition has r classes. As $p \geqslant q$, also p can be partitioned into r classes, each of which has at least two elements. Let this partition be $\left\{P_{1}, \ldots, P_{r}\right\}$. Then $\left\{P_{1} \cup Q_{1}, \ldots, P_{r} \cup Q_{r}\right\}$ is a domatic partition of G, which implies the assertion.

Now we prove the existence theorem.

Theorem 4. Let p, q, s be positive integers, $p \geqslant q \geqslant 3$. There exists a bipartite graph G with the bipartition classes P, Q such that $|P|=p,|Q|=q$ and $d_{t}(G)=$ $d_{t}(\bar{G})=s$ if and only if $\frac{1}{2} q \leqslant s \leqslant \frac{3}{4} q$.

Proof. Let $\frac{1}{2} q \leqslant s \leqslant \frac{3}{4} q$. First we shall investigate the case $s=\frac{1}{2} q$; then obviously q is even. Denote $r=\frac{1}{2} q$. Take two disjoint sets $P=\left\{x_{1}, \ldots, x_{p}\right\}$, $Q=\left\{y_{1}, \ldots, y_{p}\right\}$; the vertex set of G will be $V(G)=P \cup Q$. Join each vertex of P with each vertex of Q by an edge, except the pairs $\left\{x_{1}, y_{i}\right\}$ for $i=1, \ldots, r$. Thus G is constructed. The vertex x_{1} has degree $\frac{1}{2} q$ and thus $d_{t}(G) \leqslant \frac{1}{2} q$. Put $D_{i}=\left\{x_{r+i}, y_{r+i}\right\}$ for $i=1, \ldots, r-1$ and $d_{r}=V(G)-\bigcup_{i=1}^{r-1} D_{i}$. The partition $\left\{D_{1}, \ldots, D_{r}\right\}$ is total domatic in G and thus $d_{t}(G)=r=\frac{1}{2} q$. In \bar{G} no subset of P is total dominating and thus each total dominating set in \bar{G} has a non-empty intersection with Q. If this intersection consists of one element, then this element must be some of the vertices y_{1}, \ldots, y_{r} and moreover this total dominating set must contain a vertex of P adjacent to this vertex; such a vertex is only x_{1}. Therefore a total domatic partition of \bar{G} can contain at most one class having only one vertex in common with Q, all others must have at least two. The number of classes is at most r and $d_{t}(\bar{G}) \leqslant r$. There exists the same total domatic partition of G as in the proof of Lemma 3 and thus $d_{t}(G)=r=\frac{1}{2} q$ and $d_{t}(G)=d_{t}(\bar{G})$.

Now let $\left\lfloor\frac{1}{2} q\right\rfloor+1 \leqslant \frac{3}{4} q$; we will denote $r=\left\lfloor\frac{1}{2} q\right\rfloor$. Take again $V(G)=P \cup Q$, where $P=\left\{x_{1}, \ldots, x_{p}\right\}, Q=\left\{y_{1}, \ldots, y_{q}\right\}$. Let $m=2 s-q$; we have $2 \leqslant m \leqslant r$. We construct first the complement \bar{G}. It contains the edges $x_{i} y_{i}$ for $i=1, \ldots, m$ and in addition the edges $x_{i} y_{2 m+j}$, where $1 \leqslant j \leqslant p-2 m, j \equiv i(\bmod m)$, again for $i=1, \ldots, m$ and for all j satisfying the condition (such j need not exist). Further, \bar{G} obviously contains all edges joining two vertices of P and all edges joining two vertices of Q. In \bar{G} no subset of P is total dominating and thus each total dominating set in \bar{G} must have a non-empty intersection with Q. This intersection may consist of one vertex, only if this vertex is adjacent in \bar{G} to a vertex of P; moreover, the mentioned total dominating set must contain also a vertex of P adjacent to this vertex. Only the vertices x_{1}, \ldots, x_{m} are adjacent in \bar{G} to vertices of Q and thus in each total domatic partition of \bar{G} at most m classes have one vertex in common with Q; the others have at least two and the number of classes is at most $m+$ $\frac{1}{2}(q-m)=s$. Therefore $d_{t}(\bar{G}) \leqslant s$. Let $L_{i}=\left\{y_{m+2 i-1}, y_{m+2 i}\right\}$ for $i=1, \ldots$, $s-m$. Let $\left\{M_{1}, \ldots, M_{s-m}\right\}$ be an arbitrary partition of $P-\left\{x_{1}, \ldots, x_{m}\right\}$ into $s-m$ classes. Put $\bar{D}_{i}=\left\{x_{i}, y_{i}\right\}$ for $i=1, \ldots, m, \bar{D}_{i}=L_{i-m} \cup M_{i-m}$ for $i=$ $m+1, \ldots, m+s$. The partition $\left\{\bar{D}_{1}, \ldots, \bar{D}_{s}\right\}$ is a total domatic partition of \bar{G} and $d_{t}(\bar{G})=s$.

Also each total dominating set in G has a non-empty intersection with Q. It has one vertex in common with Q, only if this vertex has degree p in Q; otherwise it has at least two. There are m vertices of degree p in Q, namely $y_{m+1}, \ldots, y_{2 m}$. Analogously as in the case of \bar{G} we have $d_{t}(G) \leqslant m+\frac{1}{2}(q-m)=s$. Put $D_{i}=\left\{x_{m+i}, y_{m+i}\right\}$ for $i=1, \ldots, m$. Further, for q even (and thus also m even) put $D_{i}=\left\{x_{2(i-m)-1}, x_{2(i-m)} ; y_{2(i-m)-1}, y_{2(i-m)}\right\}$ for $i=m+1, \ldots, \frac{3}{2} m$, $D_{i}=\left\{x_{2 i-m-1}, x_{2 i-m}, y_{2 i-m-1}, y_{2 i-m}\right\}$ for $i=\frac{3}{2} m+1, \ldots, s$. For q odd we have $D_{i}=\left\{x_{2(i-m)-1}, x_{2(i-m)}, y_{2(i-m)-1}, y_{2(i-m)}\right\}$ for $i=m+1, \ldots, \frac{1}{2}(3 m-1), D_{i}=$ $\left\{x_{m}, x_{2 m+1}, y_{m}, y_{2 m+1}\right\}$ for $i=\frac{1}{2}(3 m+1), D_{i}=\left\{x_{2 i-m-1}, x_{2 i-m}, y_{2 i-m-1}, y_{2} i-m\right\}$ for $i=\frac{1}{2}(3 m+1)+1, \ldots, s$. Then $\left\{D_{1}, \ldots, D_{s}\right\}$ is a total domatic partition of G and we have $d_{t}(G)=d_{t}(\bar{G})=s$.

Now consider the cases when a does not satisfy the above mentioned inequality. By Lemma 3 for $s<\left\lfloor\frac{1}{2} q\right\rfloor$ the required graph does not exist. For q odd consider the case $s=\left\lfloor\frac{1}{2} q\right\rfloor=\frac{1}{2}(q-1)<\frac{1}{2} q$. We have $d_{t}(\bar{G})=s$ in the case when G is a complete bipartite graph $K_{p, q}$, but then $d_{t}(G)=q \neq s$. Suppose that G is a bipartite graph on P, Q with $|P|=p,|Q|=q$ which is not $K_{p, q}$. Then there exists $x \in P$ and $y \in Q$ such that x, y are non-adjacent in G and thus adjacent in \bar{G}. Let $\left\{L_{1}, \ldots, L_{s}\right\}$ be a partition of $Q-\{y\}$ into two-element sets, let $\left\{M_{1}, \ldots, M_{s}\right\}$ be a partition of $P-\{x\}$ into sets with at least two vertices. Put $D_{i}=L_{i} \cup M_{i}$ for $i=1, \ldots, s, D_{s+1}=\{x, y\}$. The partition $\left\{D_{1}, \ldots, D_{s+1}\right\}$ is total domatic in \bar{G} and $d_{t}(\bar{G}) \geqslant s+1$. This excludes the case $s=\frac{1}{2}(q-1)$.

Suppose $s>\frac{3}{4} q$. With the notation introduced above, we have $m=2 s-q>\frac{1}{2} q$. As we have seen in the first part of the proof, for $d_{t}(G)=s$ we must have at least m vertices of degree p in Q; they are non-adjacent to any vertex in G. For $d_{t}(\bar{G})=s$ we must have at least m vertice of Q which are adjacent to some vertex of P in \bar{G}. As $m>\frac{1}{2} q$, these two conditions cannot be satisfied simultaneously and thus for $s>\frac{3}{4} q$ the required graph does not exist.

At the end we prove a theorem which concerns graphs in general, not only bipartite graphs

Theorem 5. No disconnected graph G with $d_{t}(G)=d_{t}(\bar{G})$ exists.
Proof. Let G be a disconnected graph. If G contains isolated vertices, then $d_{t}(G)$ is not defined; therefore suppose that G has no isolated vertex. Let H_{1} be a connected component of G with the minimum number of vertices; let $H_{2}=G-H_{1}$. Let h be the number of vertices of H_{1}. In \bar{G} each vertex of H_{1} is adjacent to each vertex of H_{2}. Let the vertices of H_{1} be v_{1}, \ldots, v_{h} and choose h pairwise distinct vertices w_{1}, \ldots, w_{h} in H_{2}. Put $\bar{D}_{i}=\left\{v_{i}, w_{i}\right\}$ for $i=1, \ldots, h-1$ and $\bar{D}_{h}=V(G)-$ $\bigcup_{i=1}^{n-1} \bar{D}_{i}$. Then $\left\{\bar{D}_{1}, \ldots, \bar{D}_{h}\right\}$ is a total domatic partition of \bar{G} and $d_{t}(\bar{G}) \geqslant h$. The total domatic number of G is the minimum of total domatic numbers of the connected components of G and thus $d_{t}(G) \leqslant d_{t}\left(H_{1}\right)$. Any total dominating set in a graph has at least two vertices and thus $d_{t}(G) \leqslant d_{t}\left(H_{1}\right) \leqslant \frac{1}{2} h<h \leqslant d(\bar{G})$.

References

[1] E. J. Cockayne and S. T. Hedetniemi: Towards the theory of domination in graphs. Networks 7 (1977), 247-261.
[2] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi: Total domination in graphs. Networks 10 (1980), 211-219.
[3] J. E. Dunbar, T. W. Haynes and M. A. Henning: The domatic number of a graph and its complement. Congr. Numer. 8126 (1997), 53-63.

Author's address: Technická universita, Kat. aplikované matematiky, Voroněžská 13 , 46117 Liberec, Czech Republic.

