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DOMINATION IN BIPARTITE GRAPHS
AND IN THEIR COMPLEMENTS
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Abstract. The domatic numbers of a graph G and of its complementG were studied by
J.E. Dunbar, T. W. Haynes and M. A. Henning. They suggested four open problems. We
will solve the following ones:

Characterize bipartite graphs G having d(G) = d(G).
Further, we will present a partial solution to the problem:

Is it true that if G is a graph satisfying d(G) = d(G), then v(G) = v(G)?
Finally, we prove an existence theorem concerning the total domatic number of a graph
and of its complement.
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We consider finite undirected graphs without loops and multiple edges. Mostly we
treat bipartite graphs. The bipartition classes of such a graph will be denoted by P
and @ and their cardinalities by p and ¢ respectively; the notation will be chosen so
that p > ¢q. By Ng(z) we denote the open neighbourhood of a vertex x in a graph G,
i.e. the set of all vertices which are adjacent to x in G.

A subset D of the vertex set V(G) of a graph G is called dominating (or total
dominating) in G, if for each € V(G)— D (or for each = € V(G), respectively) there
exists y € D adjacent to . A domatic (or total domatic) partition of G is a partition
of V(G), all of whose classes are dominating (or total dominating, respectively) sets
in G. The domination number (or total domination number) of G is the minimum
number of vertices of a dominating (or total dominating, respectively) set in G. The
domatic [1] (or total domatic [2]) number of G is the maximum number of classes of
a domatic (or total domatic, respectively) partition of G. The domination number
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of G is denoted by (G), its total domination number by :(G), its domatic number
by d(G), its total domatic number by d;(G).
Before solving the first mentioned problem we exclude certain cases.

Lemma 1. Let G be a graph with an isolated vertex. Then d(G) # d(G).

Proof. Let v be an isolated vertex in G. It is contained in all dominating sets
in G and thus no two of them may be disjoint and d(G) = 1. In G there exists the
domatic partition {{v}, V(G) — {v}} and thus d(G) = 2. O

If ¢ = 1 for a bipartite graph G, then either G or G has an isolated vertex.
Therefore the following proposition holds.

Proposition. Let G be a bipartite graph in which one bipartition class consists
of one element. Then d(G) # d(G).

Lemma 2. Let G be a bipartite graph with bipartition classes P, Q, let p = |p|,

¢=1Ql, p>q>2. Thend(G) <q<d(@G).

Proof. No proper subset of P or of @ is dominating in G. Therefore if D is a
dominating set in G, then either D = P,or D =Q,or DNP # 0and DNQ # 0.
A domatic partition of G is either {P,Q}, therefore with two classes, or has the
property that each of its classes has a non-empty intersection with ) and thus it
has at most ¢ classes; this implies d(G) < ¢. In the complement G the sets P, Q
induce complete subgraphs and therefore each union of a non-empty subset of P and
a non-empty subset of ) is dominating in G. We have p > ¢ and therefore there
exists a partition {My,..., My} of P with @ classes. If Q@ = {y1,...,yq}, we may
take the partition {M1U{y1},..., MgU{yq}} of V(G) and this is a domatic partition

of G. Therefore ¢ < d(G). O

Now we prove a theorem.

Theorem 1. Let G be a bipartite graph without isolated vertices and with bi-
partition classes P, Q, let p = |P|, ¢ = |Q|, p > q > 2. The equality d(G) = d(G)
holds if and only if the following conditions are satisfied:

(i) The degree of each vertex of P in G is at least g — 1.
(ii) The number of vertices of P of degree q is greater than or equal to the number
of vertices of QQ of degree p.

(iii) Either p < 2q — 1, or there exists at least one vertex of Q of degree p.

Proof. Let the conditions (i), (ii), (iii) hold. Let y1,...,y, be the vertices
of Q. Let My = {z € P| Ng(z) = Q} and M; = {& € P | y; & Ng(z)}
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for i = 1,...,q. The condition (i) implies that the sets My, M1,..., M, are pair-
wise disjoint; some of them may be empty. Let Jy = {i € {1,...,q} | M; = 0},
Ji={ie{l,...,q} | M; # 0}. For i € Jy the vertex z; is adjacent to all ver-
tices of P and its degree is p. By (ii) we have |My| > |Jo| and thus there ex-
ists a partition {L; | i € Jo} of My. Now define sets D; for ¢« = 1,...,q. If
i € Jo, then D; = L; U {y;}. If i € Ji, then D, = M; U {y;}. The parti-
tion D = {Ds,..., Dy} is a domatic partition of G and thus d(G) > ¢ and, by
Lemma 2, d(G) = ¢q. The partition D is also a domatic partition of G and thus
d(G) > q. Suppose that d(G) > ¢ + 1 and let D’ be the corresponding domatic
partition of G. At most ¢ classes of D’ may have non-empty intersections with Q
and therefore there exists a class D’ of D’ which is a subset of P. Each vertex
of @ is adjacent in G and thus non-adjacent in G to a vertex of D’. If there ex-
ists a vertex of @ of degree p (condition (iii)), then this vertex is adjacent in G
to all vertices of P and thus also to all of D’, which is a contradiction. If such a
vertex does not exist, then p < 2¢ — 1 by (iii). By (i) each vertex of D’ is adja-
cent in G to at most one vertex of @) (to exactly one, if D’ is minimal with respect
to inclusion), therefore |D’| < g. No proper subset of ) is dominating in G, be-
cause for each vertex of @ there exists a vertex of D’ adjacent in G only to it.
Hence each class of D’ has a non-empty intersection with P. As D’ contains at
least g vertices of P, the number of all other classes of D’ is at most p — ¢ and
|D'| < p—q+1. By (iii) then |D’| < ¢, which is a contradiction. Therefore d(G) = ¢
and d(G) = d(G).

Now suppose that (i) does not hold. There exists a vertex xg € P whose degree is
at most ¢ —2 and therefore there exist vertices y1 € @, y2 € @ which are not adjacent
to xg. Suppose that d(G) = g and let D = Dy, ..., D, be the corresponding domatic
partition. Each class of D has exactly one element in common with @; without loss
of generality let D1 N Q = y1, D2 NQ = y2. But then both Dy, Ds must contain z,
which is a contradiction. Therefore d(G) < q < d(G).

Suppose that (i) does not hold; by our notation this means |My| < |Jy|. Suppose
that d(G) = g and let D = {D1,..., D} be the corresponding partition. We use the
notation @ = {y1,...,y,} and without loss of generality we suppose that D; N Q =
{yi} for i = 1,...,q. If i € Jy, then M; C D; — {y;}. Therefore if i € Jy, then
D;NP C My. As |My| < |Jo| and all these intersections must be non-empty and
pairwise disjoint, we have a contradiction. Therefore again d(G) < q < d(G).

Now suppose that (iii) does not hold; therefore p > 2¢ and Jy = ), which means
M; # () for each ¢ € {1,...,q}. In each M; we choose a vertex x; and denote
A = {z1,...,24}. In G the vertices z;, y; are adjacent for each i € {1,...,q},
therefore A is a dominating set in G. As p > 2¢, the set P — A has at least ¢ elements
and we may choose a partition {51, ..., S} of P—A with ¢ classes. Evidently S;U{y;}
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is a dominating set in G for each i € {1,...,q} and {A4,S1 U {y1},.... S U{y,}} is

a domatic partition of G. We have d(G) > ¢+ 1 > ¢ > d(G). O

The problem whether d(G) = d(G) implies 7(G) = «(G) will be solved only for
bipartite graphs.

Theorem 2. Let G be a bipartite graph such that d(G) = d(G). Then v(G) =
(@)

Proof. Again we may restrict our considerations to graphs with ¢ > 2 and

without isolated vertices. According to Theorem 1 the equality d(G) = d(G) implies
the validity of the conditions (i), (ii), (iii) and d(G) = d(G) = ¢. If there exists
at least one vertex y € @ of degree p, then by (ii) there exists at least one vertex
x € P of degree q. The set {z,y} is dominating in G. We have ¢ > 2 and therefore
no one-element set may be dominating in G and y(G) = 2. If vertex y exists, then
p < 2¢ — 1 must hold by (iii). We use the notation from the proof of Theorem 1. We
have M; # 0 for all ¢ € {1,...,q}. As the sets M; are pairwise disjoint subsets of P
and p < 2g — 1, there exists some j € {1,...,q} such that |M;| = 1. Let M; = {x}.
The set {z,y;} is dominating in G and v(G) = 2. In the graph G each two-element
set consisting of a vertex of P and a vertex of @) is dominating, because P and Q
induce complete subgraphs of G. No vertex is adjacent in G to all others, because

such a vertex would be isolated in G. Therefore v(G) = 2 = v(QG). O

In the case of the total domatic number the situation is more complicated. We will
give a full characterization only for the case ¢ = 2; for a general case we will prove
only an existence theorem. From our considerations we must exclude graphs with
isolated vertices, because for them the total domatic number is not well-defined. In
particular, for bipartite graphs we exclude the case ¢ = 1, because in this case the
complement contains an isolated vertex.

For ¢ = 2 we can give a full characterization.

Theorem 3. Let G be a bipartite graph without isolated vertices and with bi-

partition classes P, Q, let p = |P|, ¢ = |Q| = 2, p > 2. The equality d;(G) = di(G)
holds if and only if exactly one vertex of (Q has degree p.

Proof. Let Q = {y1,y2}. Suppose (without loss of generality) that y; has
degree p, while y2 has not. Then there exists a vertex « € P non-adjacent to yo. Its
degree in G is 1. In [2] it is stated that d;(G) cannot exceed the minimum degree
of a vertex in G and therefore d;(G) = 1. In G the vertex y; has degree 1 and thus
d¢(G) =1 and dy(GQ) = dy(G).

If none of the vertices of @ has degree p, then there exists a vertex x; € P non-
adjacent to y; and a vertex xo € P non-adjacent to yo. We have x1 # x5, otherwise
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this vertex would be isolated. Both x;, z2 have degree 1 and thus d;(G) = 1. If
we put Dy = {z1,11}, D2 = (A — {z1}) U {y2}, then {D1, D>} is a total domatic
partition of G and thus d;(G) > 2 and d;(G) # di(G). If both vertices of @ have
degree p, then choose x € P and put D] = {z,11}, Dy = (A — {z}) U{y1}. The
partition {D/, D}} is domatic in G and thus d:(G) = 2 (the degrees of vertices of P
are equal to 2). In G both vertices of ) have degree 1 and thus d;(G) = 1 and
d(G) # di(G). o

Now we prove a lemma.

Lemma 3. Let G be a bipartite graph without isolated vertices and with bipar-
tition classes P, Q, let p = |P|, ¢ = |Q|, p > ¢ > 2. Then d(G) > |3q/.

Proof. The sets P, @ induce complete subgraphs in G. Denote r = \_%qj
Choose an arbitrary partition {Q1,...,Q,} of @ such that at most one class has
three elements and all others have two elements each; such a partition has r classes.
As p > q, also p can be partitioned into r classes, each of which has at least two
elements. Let this partition be {Pi,...,P.}. Then {P, UQ1,...,P. UQ,} is a
domatic partition of GG, which implies the assertion. O

Now we prove the existence theorem.

Theorem 4. Let p, q, s be positive integers, p > q > 3. There exists a bipartite
graph G with the bipartition classes P, @) such that |P| = p, |Q| = ¢ and d;(G) =
di(G) = s if and only if 1q < s < 3q.

Proof. Let %q < s < %q. First we shall investigate the case s = %q; then
obviously ¢ is even. Denote r = %q. Take two disjoint sets P = {x1,...,2p},
Q = {y1,...,yp}; the vertex set of G will be V(G) = P U Q. Join each vertex
of P with each vertex of Q by an edge, except the pairs {z1,y;} for i = 1,...,r.
Thus G is constructed. The vertex x; has degree %q and thus d;(G) < %q. Put
D; = {xp4i,yrgif for i = 1,...;r — 1 and d, = V(G) — TUI D;. The partition
{D1,...,D,} is total domatic in G and thus d;(G) = r _ %lq. In G no subset
of P is total dominating and thus each total dominating set in G has a non-empty
intersection with @. If this intersection consists of one element, then this element
must be some of the vertices yi, ..., y, and moreover this total dominating set must
contain a vertex of P adjacent to this vertex; such a vertex is only x;. Therefore a
total domatic partition of G can contain at most one class having only one vertex
in common with @, all others must have at least two. The number of classes is at

most r and d;(G) < r. There exists the same total domatic partition of G as in the
proof of Lemma 3 and thus d;(G) = r = 1q and d;(G) = dy(G).
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Now let [g] +1 < 3¢; we will denote r = |[3¢q]. Take again V(G) = P U
where P = {z1,...,2p}, Q@ = {y1,...,Yq}. Let m = 2s — g; we have 2 < m <
We construct first the complement G. It contains the edges z;y; for i = 1,...,m

Q
T.

and in addition the edges x;y2m+j, where 1 < j < p—2m, j =i (mod m), again for
t=1,...,m and for all j satisfying the condition (such j need not exist). Further,
G obviously contains all edges joining two vertices of P and all edges joining two
vertices of . In G no subset of P is total dominating and thus each total dominating
set in G must have a non-empty intersection with (). This intersection may consist
of one vertex, only if this vertex is adjacent in G to a vertex of P; moreover, the
mentioned total dominating set must contain also a vertex of P adjacent to this
vertex. Only the vertices z1,..., 2, are adjacent in G to vertices of @ and thus
in each total domatic partition of G at most m classes have one vertex in common
with ); the others have at least two and the number of classes is at most m +
1(¢ —m) = s. Therefore di(G) < s. Let Li = {ym+2i—1,Ym2i} for i = 1,...,
s—m. Let {My,...,Ms_,,} be an arbitrary partition of P — {x1,...,%,,} into
s —m classes. Put D; = {x;,y;} fori = 1,....m,D; = L;_,, UM;_,, for i =
m+1,...,m+ s. The partition {Dy,..., D} is a total domatic partition of G and
di(G) = s.

Also each total dominating set in G has a non-empty intersection with Q.
It has one vertex in common with @, only if this vertex has degree p in Q;
otherwise it has at least two. There are m vertices of degree p in @, namely
Ymil,- -+, Y2m. Analogously as in the case of G we have d;(G) < m + %(q —m) =s.
Put D; = {&m+i,Ym+yi} for ¢ = 1,...,m. Further, for ¢ even (and thus also
m even) put D; = {To(i—m)—1, Ta(i—m); Y2(i—m)—1s Y2(i—m) } for i = m+1,..., %m,
D; = {&2i—m—1,%2i—m, Y2i—m—1,Y2i—m} for i = %m +1,...,s. For ¢ odd we have
D; = {IQ(i—m)—lvx2(i—m)7y2(i—m)—17y2(i—m)} fori =m+41,..., %(Sm -1), D; =
{Zm, Tomt 1, Ym, Yom1} for i = S(B3m—+1), Dy = {Z2i—m—1, T2i—m, Y2i—m—1, Y2i —m}
fori=4(3m+1)+1,...,s. Then {D1,...,D,} is a total domatic partition of G
and we have d;(G) = d(G) = s.

Now consider the cases when a does not satisfy the above mentioned inequality.
By Lemma 3 for s < [%qj the required graph does not exist. For ¢ odd consider the
case s = | 3q| = 3(¢—1) < 2. We have d;(G) = s in the case when G is a complete
bipartite graph K, 4, but then d,(G) = ¢ # s. Suppose that G is a bipartite graph
on P, Q with |P| = p, |Q| = g which is not K, ,. Then there exists x € P and y € Q
such that z, y are non-adjacent in GG and thus adjacent in G. Let {Ly,..., L.} be a
partition of @ —{y} into two-element sets, let {M;, ..., M} be a partition of P—{z}
into sets with at least two vertices. Put D; = L,UM, fori=1,...,s, Ds11 = {z,y}.
The partition { D1, ..., Dsy1} is total domatic in G and d¢(G) > s+ 1. This excludes
the case s = £(q — 1).
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Suppose s > %q. With the notation introduced above, we have m = 2s — ¢ > %q.
As we have seen in the first part of the proof, for d;(G) = s we must have at least
m vertices of degree p in Q); they are non-adjacent to any vertex in G. For d;(G) = s
we must have at least m vertice of Q) which are adjacent to some vertex of P in G.
Asm > %q, these two conditions cannot be satisfied simultaneously and thus for

s> %q the required graph does not exist. O

At the end we prove a theorem which concerns graphs in general, not only bipartite
graphs.

Theorem 5. No disconnected graph G with d;(G) = d¢(G) exists.

Proof. Let G be a disconnected graph. If G contains isolated vertices, then
di(G) is not defined; therefore suppose that G has no isolated vertex. Let H; be a
connected component of G with the minimum number of vertices; let Hy = G — Hy.
Let h be the number of vertices of H;. In G each vertex of H; is adjacent to each
vertex of Hs. Let the vertices of H; be vy,...,v, and choose h pairwise distinct
vertices wy, ..., wp in Hy. Put D; = {v;,w;} fori=1,...,h—1 and D, = V(G) —
nul D;. Then {Dy,...,Dy} is a total domatic partition of G and d;(G) > h. The

i=1
total domatic number of G is the minimum of total domatic numbers of the connected

components of G and thus d¢(G) < d;(H;). Any total dominating set in a graph has
at least two vertices and thus d;(G) < di(Hy) < %h < h < d(G). O
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