INTELLIGENT TEXTILE AND FIBER REINFORCED MPC COMPOSITES FOR SHM

dc.contributor.authorYOSEF, LIDOR
dc.contributor.authorGOLDFEL, YISKA
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2023-04-19T09:20:50Z
dc.date.available2023-04-19T09:20:50Z
dc.description.abstractThis study develops novel intelligent composite structural elements combining three advanced technologies: magnesium phosphate cement (MPC) matrix, smart-self sensory carbon-based textile reinforcement system, and additive short-dispersed fibers. In such system, the carbon rovings simultaneously serve as the main reinforcement system and the sensory agent. The material properties of the MPC matrix include minimization of environmental effects, high flexural strength and enhanced rheological properties which is an advantage in textile reinforcement system. From the sensory point of view, MPC is electrically insulated matrix which enhances the measured electrical signal from the carbon rovings. Experimental investigation demonstrates the advanced capabilities of the new hybrid structures. The investigation compares between the structural and electrical responses of textile reinforced MPC elements and TRC elements under flexural loading. The structural-electrical correlation enables to further explore new composite configurations and to develop enhanced smart self-sensory systems. The study demonstrates that by merging MPC mixture with textile and fiber reinforcement systems, it is possible to design and construct thin-walled, elements with advanced structural and self-sensing capabilities.cs
dc.formattext
dc.format.extent6 stran
dc.identifier.doi10.15240/tul/008/2023-1-010
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/167239
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonAveston J., Cooper G., Kelly A., (1971) “The properties of fibre composites”, in Conference Proceedings of the National Physical Laboratory, IPC Science and Technology Press Ltd., Guildford, England, pp. 15–26
dc.relation.isbasedonChristner C., Horoschenkoff A., and Rapp H. (2012). Longitudinal and transvers strain sensitivity of embedded carbon fiber sensors, Journal of Composite Materials, 47(2):155-167, 2012. https://doi.org/10.1177/0021998312437983
dc.relation.isbasedonGao S.L., Mäder, E. and Plonka, R. (2004). Coatings for glass fibers in a cementitious matrix, Acta Materialia, Vol. 52, No. 16, pp. 4745-4755. http://dx.doi.org/10.1016/j.actamat.2004.06.028
dc.relation.isbasedonGoldfeld, Y., Biton, R. (2022). Experimental study of thinwalled composite elements made of magnesium phosphate cement reinforced by fibers and textile, Submitted for Publication.
dc.relation.isbasedonGoldfeld, Y., Quadflieg, T., Ben-Aarosh, S., and Gries, T. (2017a). Micro and macro crack sensing in TRC beam under cyclic loading. Journal of Mechanics of Materials and Structures, 12(5), 579-601. https://doi.org/10.2140/jomms.2017.12.579
dc.relation.isbasedonGoldfeld Y., Yosef L. (2019). Sensing accumulated cracking with smart coated and uncoated carbon based TRC, Measurement, 141:137-151. https://doi.org/10.1016/j.measurement.2019.04.033
dc.relation.isbasedonGoldfeld Y., Yosef L. (2020). Electrical–structural characterization of smart carbon-based textile reinforced concrete beams by integrative gauge factors. Strain. 2020;56:e12344 https://doi.org/10.1111/str.12344
dc.relation.isbasedonHegger J. and Voss S., "Investigations on the bearing behavior and application potential of textile reinforced concrete." Eng. Struct. 30 (7) (2008) 2050–2056.
dc.relation.isbasedonHegger J., Kulas C., Raupach M. And Büttner T., "Tragverhalten und Dauerhaftigkeit einer schlanken Textilbetonbrücke". Beton- und Stahlbetonbau 106 (2) (2011b) 72–80. http://dx.doi.org/10.1002/best.201000082
dc.relation.isbasedonLepenies, I., Meyer, C., Schorn, H., & Zastrau, B. (2007). Modeling of load transfer behavior of AR-glass-rovings in textile reinforced concrete. Special Publication, 244, 109- 124.
dc.relation.isbasedonMobasher, B., Peled, A., and Pahilajani, J., Pultrusion of fabric reinforced high fly ash blended cement composites, in Sixth Rilem Symposium on Fibre-Reinforced Concrete (FRC), BEFIB 2004, Varenna, Italy, September 20–22, 2004.
dc.relation.isbasedonMobasher B., Dey, V., Cohen, Z., and Peled A. (2014) "Correlation of constitutive response of hybrid textile reinforced concrete from tensile and flexural tests", Cement & Concrete Composites, 53:148-161. https://doi.org/10.1016/j.cemconcomp.2014.06.004
dc.relation.isbasedonPerry, G., Dittel, G., Gries, T., and Goldfeld, Y. (2020). Mutual effect of textile binding and coating on the structural performance of TRC beams. Journal of Materials in Civil Engineering, 32(8), 04020232. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0003331
dc.relation.isbasedonSilva F. D. A., Butler M., Mechtcherine V., Zhu D., and Mobasher B.. "Strain rate effect on the tensile behavior of textile-reinforced concrete under static and dynamic loading". Mater. Sci. Eng. 528 (3) (2011) 1727–1734. http://dx.doi.org/10.1016/j.msea.2010.11.014
dc.relation.isbasedonSugama T., and Kukacka L.E. (1983). Characteristics of magnesium polyphosphate cements derived from ammonium polyphosphate solutions. Cement and Concrete Research Vol. 13, pp. 499-506. https://doi.org/10.1016/0008-8846(83)90008-X
dc.relation.isbasedonTysmans T., Adriaenssens S., Wastiels J., "Form finding methodology for force modelled anticlastic shells in glass fibre textile reinforced cement composites". Eng Struct 33 (2011) 2603–11. http://dx.doi.org/10.1016/j.engstruct.2011.05.007
dc.relation.isbasedonTysmans, T., Adriaenssens, S., Cuypers, H., and Wastiels, J., Structural analysis of small span textile reinforced concrete shells with double curvature, Composites Science and Technology, 69, 1790–1796, 2009. http://dx.doi.org/10.1016/j.compscitech.2008.09.021
dc.relation.isbasedonWalling S.A., and Provis J. L. (2016). A discussion of the papers “Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements” and “Enhancing the carbonation of MgO cement porous blocks through improved curing conditions”, by C Unluer and A Al-Tabbaa". Cem. Concr. Res. 79 (2016) 424−426. http://dx.doi.org/10.1016/j.cemconres.2015.09.010
dc.relation.isbasedonYang Q., Zhu B., Wu X., (2000). "Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete". Materials and Structures 33 (4) (2000) 229-234. http://dx.doi.org/10.1007/BF02479332
dc.relation.isbasedonYosef L., Goldfeld Y., (2022). “Effect of Matrix Electrical and Micro-Structural Properties on the Self-Sensory Capabilities of Carbon-Based Textile Reinforced Composites”, submitted for publication. https://doi.org/10.1016/j.jobe.2023.105909
dc.relation.isbasedonZastrau, B., Lepenies, I., & Richter, M. (2008). On the multi scale modeling of textile reinforced concrete. Technische Mechanik-European Journal of Engineering Mechanics, 28(1), 53-63.
dc.relation.isbasedonZhu C.J., Fang S., Ng P.L., Pundliene I., and Chen J.J, (2020). “Flexural Behavior of Reinforced Concrete Beams Strengthened by Textile Reinforced Magnesium Potassium Phosphate Cement Mortar”. Front. Mater. 7:272. https://doi.org/10.3389/fmats.2020.00272
dc.relation.ispartofFibres and Textiles
dc.subjectIntelligent structurescs
dc.subjectAdvanced structural responsecs
dc.subjectEnhanced sensory capabilitiescs
dc.subjectTextile and fiber reinforcementcs
dc.titleINTELLIGENT TEXTILE AND FIBER REINFORCED MPC COMPOSITES FOR SHMen
dc.typeArticleen
local.accessopen access
local.citation.epage66
local.citation.spage61
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue1
local.relation.volume30
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2023_1_10.pdf
Size:
845.37 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections