THE INFLUENCE OF LOW-TEMPERATURE PLASMA ON PERMANENCE OF ANTIMICROBIAL NANO-FINISH

dc.contributor.authorŠČASNÍKOVÁ, KATARÍNA
dc.contributor.authorDUBEC, ANDREJ
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2023-11-02T09:11:45Z
dc.date.available2023-11-02T09:11:45Z
dc.description.abstractThis paper describes the effect of low-temperature plasma on increasing permanence of surface finish of textile materials using an antimicrobial nanosol. Selected textile materials (polyester and polyamide woven fabrics, polypropylene non-woven fabric) were pre-treated by surface activation with low-temperature plasma at atmospheric pressure and subsequently finished using an antimicrobial (AMB) nanosol with a concentration of 60 ppm Ag+, 120 ppm Ag+ in the application solution. The goal was to increase the permanence of AMB nano-coating of textiles after washing and drying. To verify the effect of low-temperature plasma on increasing the permanence of the nanolayer, washing and drying was performed in accordance with the STN EN ISO 6330 standard. To determine antibacterial activity and effectiveness of the nano-coated textile materials, a quantitative test method was used in accordance with the technical standard AATCC TM 100. Evaluation of the antibacterial activity of the textile materials was performed before washing and after 20 washing cycles.cs
dc.formattext
dc.format.extent9 stran
dc.identifier.doi10.15240/tul/008/2023-4-005
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/173217
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonBorcia G., Anderson C.A., Brown N.M.D.: Surface treatment of natural and synthetic textiles using a dielectric barrier discharge, Surf. Coat. Technol., 201(6), 2006, pp. 3074 – 3081. https://doi.org/10.1016/j.surfcoat.2006.06.021
dc.relation.isbasedonMorent R., De Geyter N., Verschuren J., et al.: Non-thermal plasma treatment of textiles. Surf. Coat. Technol., 202(14), 2008, pp. 3427-344. https://doi.org/10.1016/j.surfcoat.2007.12.027
dc.relation.isbasedonCerkez I., Worley S.D., Broughton R.M., et al.: Antimicrobial surface coatings for polypropylene nonwoven fabrics, React. Funct. Polyms., 73(11), 2013, pp. 1412-1419. https://doi.org/10.1016/j.reactfunctpolym.2013.07.016
dc.relation.isbasedonCheng J.P., Chiang Y.P.: Surface modification of non-woven fabric by DC pulsed plasma treatment and graft polymerization with acrylic acid. J. Membrane Sci., 270(1-2), 2006, pp. 212-220. https://doi.org/10.1016/j.memsci.2005.11.015
dc.relation.isbasedonNational Textile Center Research Briefs – Materials Competency. 2002. National Textile Center, Blue Bell. Accessed 26 June 2015. https://www.ntcresearch.org/pdf-rpts/Bref0602/M01-CR01- 02.pdf
dc.relation.isbasedonŠpitalský Z., Kováčová M., Žigo O., et al.: Výskum vplyvu nízkoteplotnej plazmy na zvýšenie permanentnosti povrchovej úpravy textilných materiálov s použitím nanosólov - 69. Zjazd chemikov, 11. – 15. september 2017, Vysoké Tatry, Horný Smokovec; ChemZi 13/1, 6P06, str. 107 (2017)
dc.relation.isbasedonShishoo R. (Ed.): Plasma Technologies for Textiles. 1st ed. London: Woodhead Publ. Ltd., Cambridge, 2007.
dc.relation.isbasedonLi, X.M., Reinhoudt D., Crego-Calama M.: What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev., 36(8), 2007, pp. 1350–1368. https://doi.org/10.1039/B602486F
dc.relation.isbasedonŠpitalský Z., Rástočná-Illová D., Žigo O., et al.: Popypropylene fabrics pretreated by atmospheric plasma, In Proceedings of Odpadové fórum 2017: Výsledky výzkumu a vývoje pro prumyslovou a komunální ekologii, volume 12, Prague, Czech Republic, CEMC, 2017
dc.relation.isbasedonParthasarathi V., Thilagavathi G.: Development of plasma enhanced antiviral surgical gown for healthcare workers, Fashion and Textiles, 2(4), 2015. https://doi.org/10.1186/s40691-015-0028-7
dc.relation.isbasedonGao Y., Cranston R.: Recent advances in antimicrobial treatments of textiles. Test. Res. J., 78(1), 2008, pp. 60-72. https://doi.org/10.1177/0040517507082
dc.relation.isbasedonWindler L., Height M., Nowack B.: Comparative evaluation of antimicrobials for textile applications. Environ. Int., 58, 2013, pp. 62 -73. https://doi.org/10.1016/j.envint.2012.12.010
dc.relation.isbasedonMorais S.D., Guedes R.M., Lopes M.A.: Antimicrobial approaches for textiles: From research market, Materials, 9(6), 2016, pp. 1 – 21. https://doi.org/10.3390/ma9060498
dc.relation.isbasedonAATCC TM 100-2019. Test Method for Antibacterial Finishes on Textile Materials.
dc.relation.ispartofFibres and Textiles
dc.subjectAntibacterial effectivenesscs
dc.subjectAntimicrobial nanosolcs
dc.subjectAntibacterial textilescs
dc.subjectLow-temperature plasmacs
dc.titleTHE INFLUENCE OF LOW-TEMPERATURE PLASMA ON PERMANENCE OF ANTIMICROBIAL NANO-FINISHen
dc.typeArticleen
local.accessopen access
local.citation.epage49
local.citation.spage41
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue4
local.relation.volume30
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2023_4_5.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections