THE EFFECT OF POLYMER TYPE AND FIBER ORIENTATION ON THE COMPLIANCE PROPERTIES OF ELECTROSPUN VASCULAR GRAFTS

dc.contributor.authorOZDEMIR, SUZAN
dc.contributor.authorOZTEMUR, JANSET
dc.contributor.authorSEZGIN, HANDE
dc.contributor.authorYALCIN-ENIS, IPEK
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2023-04-19T09:20:50Z
dc.date.available2023-04-19T09:20:50Z
dc.description.abstractVascular diseases are a major source of fatalities globally. However, the lack of accessibility of autologous vessels and the poor efficacy of commercial small-diameter vascular grafts limit surgical alternatives. Researchers therefore aimed to develop vascular prostheses that meet all requirements. Apart from the benefits of tissue-engineered grafts, significant obstacles that still hinder successful grafting include compliance mismatch, dilatation, thrombus development, and the absence of elastin. Among these issues, compliance mismatch between native vessel and artificial vascular scaffold has been mentioned in the literature as a possible cause of intimal hyperplasia, suture site rupture and endothelial and platelet cell damage. As a result, the usage of suitable materials and optimized fabrication techniques are required to achieve better control over the characteristics and functionality of the grafts. In particular, in the case of electrospun vascular grafts, the compliance can be adjusted throughout a broad range of values by adjusting the electrospinning parameters such as material selection, fiber orientation, porosity, and wall thickness. In this study, the electrospun vascular grafts consisting of pure PCL, PLA, and their blends were produced by using two different rotation speeds to achieve the oriented and non-oriented scaffolds. The impact of polymer type and fiber orientation on the compliance properties was evaluated. The results revealed that both material selection and fiber alignment have a significant effect on the compliance levels. PCL100_R grafts had the highest compliance value whereas the PCLPLA50_O scaffold had the lowest.cs
dc.formattext
dc.format.extent5 stran
dc.identifier.doi10.15240/tul/008/2023-1-011
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/167240
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonFayon, A., Menu, P., & el Omar, R. (2021). Cellularized small-caliber tissue-engineered vascular grafts: looking for the ultimate gold standard. In npj Regenerative Medicine (Vol. 6, Issue 1). Nature Research. https://doi.org/10.1038/s41536-021-00155-x
dc.relation.isbasedonTran, N., Le, A., Ho, M., Dang, N., Thi Thanh, H. H., Truong, L., Huynh, D. P., & Hiep, N. T. (2020). Polyurethane/polycaprolactone membrane grafted with conjugated linoleic acid for artificial vascular graft application. Science and Technology of Advanced Materials, 21(1), 56–66. https://doi.org/10.1080/14686996.2020.1718549
dc.relation.isbasedonNezarati, R. M., Eifert, M. B., Dempsey, D. K., & CosgriffHernandez, E. (2015). Electrospun vascular grafts with improved compliance matching to native vessels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 103(2), 313–323. https://doi.org/10.1002/jbm.b.33201
dc.relation.isbasedonYe, L., Takagi, T., Tu, C., Hagiwara, A., Geng, X., & Feng, Z. (2021). The performance of heparin modified poly(εcaprolactone) small diameter tissue engineering vascular graft in canine—A long-term pilot experiment in vivo. Journal of Biomedical Materials Research - Part A, 109(12), 2493–2505. https://doi.org/10.1002/jbm.a.37243
dc.relation.isbasedonNerem, R. M., & Seliktar, D. (2001). Vascular tissue engineering. In Annual Review of Biomedical Engineering (Vol. 3, pp. 225–243). https://doi.org/10.1146/annurev.bioeng.3.1.225
dc.relation.isbasedonYalcin Enis, I., & Gok Sadikoglu, T. (2018). Design parameters for electrospun biodegradable vascular grafts. In Journal of Industrial Textiles (Vol. 47, Issue 8, pp. 2205– 2227). SAGE Publications Ltd. https://doi.org/10.1177/1528083716654470
dc.relation.isbasedonYu, E., Mi, H. Y., Zhang, J., Thomson, J. A., & Turng, L. S. (2018). Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. Journal of Biomedical Materials Research - Part A, 106(4), 985–996. https://doi.org/10.1002/jbm.a.36297
dc.relation.isbasedonShalumon, K. T., Deepthi, S., Anupama, M. S., Nair, S. v., Jayakumar, R., & Chennazhi, K. P. (2015). Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. International Journal of Biological Macromolecules, 72, 1048–1055. https://doi.org/10.1016/j.ijbiomac.2014.09.058
dc.relation.isbasedonMohamed, R. M., & Yusoh, K. (2015). A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research, 1134, 249–255. https://doi.org/10.4028/www.scientific.net/amr.1134.249
dc.relation.isbasedonPatrício, T., Domingos, M., Gloria, A., & Bártolo, P. (2013). Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Procedia CIRP, 5, 110–114. https://doi.org/10.1016/j.procir.2013.01.022
dc.relation.isbasedonLi, S., Sengupta, D., & Chien, S. (2014). Vascular tissue engineering: From in vitro to in situ. In Wiley Interdisciplinary Reviews: Systems Biology and Medicine (Vol. 6, Issue 1, pp. 61–76). https://doi.org/10.1002/wsbm.1246
dc.relation.isbasedonJohnson, R., Ding, Y., Nagiah, N., Monnet, E., & Tan, W. (2019). Coaxially-structured fibres with tailored material properties for vascular graft implant. Materials Science and Engineering C, 97, 1–11. https://doi.org/10.1016/j.msec.2018.11.036
dc.relation.isbasedonHasan, A., Memic, A., Annabi, N., Hossain, M., Paul, A., Dokmeci, M. R., Dehghani, F., & Khademhosseini, A. (2014). Electrospun scaffolds for tissue engineering of vascular grafts. In Acta Biomaterialia (Vol. 10, Issue 1, pp. 11–25). Elsevier Ltd. https://doi.org/10.1016/j.actbio.2013.08.022
dc.relation.isbasedonHiob, M. A., She, S., Muiznieks, L. D., & Weiss, A. S. (2017). Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomaterials Science and Engineering, 3(5), 712–723. https://doi.org/10.1021/acsbiomaterials.6b00220
dc.relation.isbasedonZhang, Y., Li, X. S., Guex, A. G., Liu, S. S., Müller, E., Malini, R. I., Zhao, H. J., Rottmar, M., Maniura-Weber, K., Rossi, R. M., & Spano, F. (2017). A compliant and biomimetic three-layered vascular graft for small blood vessels. Biofabrication, 9(2). https://doi.org/10.1088/1758-5090/aa6bae
dc.relation.isbasedonFernández-Colino, A., Wolf, F., Rütten, S., Schmitz-Rode, T., Rodríguez-Cabello, J. C., Jockenhoevel, S., & Mela, P. (2019). Small Caliber Compliant Vascular Grafts Based on Elastin-Like Recombinamers for in situ Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00340
dc.relation.isbasedonDevan Ohst, J. J. (2015). Development of Novel, Bioresorbable, Small-Diameter Electrospun Vascular Grafts. Journal of Tissue Science & Engineering, 06(02). https://doi.org/10.4172/2157-7552.1000151
dc.relation.isbasedonKim, S. H., Mun, C. H., Jung, Y., Kim, S. H., Kim, D. I., & Kim, S. H. (2013). Mechanical properties of compliant double layered poly(L-lactide-co-ε- caprolactone) vascular graft. Macromolecular Research, 21(8), 886–891. https://doi.org/10.1007/s13233-013-1095-5
dc.relation.isbasedonMatsuda, T., Ihara, M., Inoguchi, H., Kwon, I. K., Takamizawa, K., & Kidoaki, S. (2005). Mechano-active scaffold design of small-diameter artificial graft made of electrospun segmented polyurethane fabrics. Journal of Biomedical Materials Research - Part A, 73(1), 125–131. https://doi.org/10.1002/jbm.a.30260
dc.relation.isbasedonLi, C., Wang, F., Douglas, G., Zhang, Z., Guidoin, R., & Wang, L. (2017). Comprehensive mechanical characterization of PLA fabric combined with PCL to form a composite structure vascular graft. Journal of the Mechanical Behavior of Biomedical Materials, 69, 39–49. https://doi.org/10.1016/j.jmbbm.2016.11.005
dc.relation.isbasedonMcClure, M. J., Simpson, D. G., & Bowlin, G. L. (2012). Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: Optimization of graft properties. Journal of the Mechanical Behavior of Biomedical Materials, 10, 48–61. https://doi.org/10.1016/j.jmbbm.2012.02.026
dc.relation.isbasedonBouchet, M., Gauthier, M., Maire, M., Ajji, A., & Lerouge, S. (2019). Towards compliant small-diameter vascular grafts: Predictive analytical model and experiments. Materials Science and Engineering C, 100, 715–723. https://doi.org/10.1016/j.msec.2019.03.023
dc.relation.isbasedonXing, M. Y., Yu, C. L., Wu, Y. F., Wang, L., & Guan, G. P. (2020). Preparation and characterization of a polyvinyl alcohol/polyacrylamide hydrogel vascular graft reinforced with a braided fiber stent. Textile Research Journal, 90(13–14), 1537–1548. https://doi.org/10.1177/0040517519896753
dc.relation.isbasedonGrasl, C., Stoiber, M., Röhrich, M., Moscato, F., Bergmeister, H., & Schima, H. (2021). Electrospinning of small diameter vascular grafts with preferential fiber directions and comparison of their mechanical behavior with native rat aortas. Materials Science and Engineering C, 124. https://doi.org/10.1016/j.msec.2021.112085
dc.relation.isbasedonZahedi, P., Karami, Z., Rezaeian, I., Jafari, S. H., Mahdaviani, P., Abdolghaffari, A. H., & Abdollahi, M. (2012). Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(ecaprolactone) blends. Journal of Applied Polymer Science, 124(5), 4174–4183. https://doi.org/10.1002/app.35372
dc.relation.isbasedonCarvalho, J. R. G., Conde, G., Antonioli, M. L., Dias, P. P., Vasconcelos, R. O., Taboga, S. R., Canola, P. A., Chinelatto, M. A., Pereira, G. T., & Ferraz, G. C. (2020). Biocompatibility and biodegradation of poly(lactic acid) (PLA) and an immiscible PLA/poly(ε-caprolactone) (PCL) blend compatibilized by poly(ε-caprolactone-btetrahydrofuran) implanted in horses. Polymer Journal, 52(6), 629–643. https://doi.org/10.1038/s41428-020-0308-y
dc.relation.isbasedonOzdemir, S., Yalcin-Enis, I., Yalcinkaya, B., & Yalcinkaya, F. (2022). An Investigation of the Constructional Design Components Affecting the Mechanical Response and Cellular Activity of Electrospun Vascular Grafts. Membranes, 12(10), 929. https://doi.org/10.3390/membranes12100929
dc.relation.ispartofFibres and Textiles
dc.subjectVascular graftscs
dc.subjectElectrospinningcs
dc.subjectCompliance mismatchcs
dc.subjectIntimal hyperplasiacs
dc.titleTHE EFFECT OF POLYMER TYPE AND FIBER ORIENTATION ON THE COMPLIANCE PROPERTIES OF ELECTROSPUN VASCULAR GRAFTSen
dc.typeArticleen
local.accessopen access
local.citation.epage71
local.citation.spage67
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue1
local.relation.volume30
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2023_1_11.pdf
Size:
169.44 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections