HYBRID 3D WOVEN STRUCTURES FOR CONCRETE REINFORCEMENT UNDER IMPACT LOADING PART 1: DEVELOPMENT OF A BI-AXIAL CORE DESIGN

dc.contributor.authorOrtega Arbulu, Juan Daniel
dc.contributor.authorNuss, Dominik
dc.contributor.authorCherif, Chokri
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2025-01-27T10:12:25Z
dc.date.available2025-01-27T10:12:25Z
dc.description.abstractSteel reinforced concrete (RC) is extensively used in the construction industry due to its high strength, durability, and versatility. Nonetheless, its resilience under dynamic loads, such as impact, remains particularly low. The research training group DFG GRK 2250 aims to significantly improve the impact energy absorption of existing infrastructures by applying thin layers of an innovative strengthening material composed of a strain hardening cementitious composite and a novel textile reinforcement. This paper investigated methods for manufacturing 3D hybrid woven fabrics with a core incorporating spatial elements in both the weft and warp directions, based on a bi-axial core design. The challenges associated with shaping spatial elements before and during the weaving process were discussed, with the latter proving to be the optimal choice when combined with carbon fiber towpregs. After developing the structural design, selecting the materials for each element, and establishing the fabric binding pattern, a demonstrator was successfully produced using a modified rapier weaving machine.cs
dc.formattext
dc.format.extent8 stran
dc.identifier.doi10.15240/tul/008/2024-3/4-002
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/176556
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonMamlouk M., Zaniewski J.: Materials for civil and construction engineers. Essex: Pearson Education Limited, 2018. ISBN: 9781292154404.
dc.relation.isbasedonYoo D.-Y., Banthia N.: Impact resistance of fiber-reinforced concrete – A review. Cement and Concrete Composites, 104, 103389, 2019. https://doi.org/10.1016/j.indcrop.2022.116235
dc.relation.isbasedonSathishkumar T., Satheeshkumar S., Naveen J.: Glass fiberreinforced polymer composites – a review. Journal of Reinforced Plastics and Composites, 33(13), 2014, pp. 1258-1275. https://doi.org/10.1177/0731684414530790
dc.relation.isbasedonFriese D., Scheurer M., Hahn L., et al.: Textile reinforcement structures for concrete construction applications––a review. Journal of Composite Materials, 56(26), 2022, pp. 4041-4064. https://doi.org/10.1177/00219983221127181
dc.relation.isbasedonIşildar G., Morsali S., Zar Gari Z.: A comparison LCA of the common steel rebars and FRP. J Build Rehabil, 5(1), 2020.
dc.relation.isbasedonVenigalla S., Nabilah A., Mohd Nasir N., et al.: TextileReinforced Concrete as a Structural Member: A Review. Buildings, 12(4), 2022, pp. 474. https://doi.org/10.1007/s41024-020-0074-4
dc.relation.isbasedonSP-100: Concrete Durability: Proceedings of Katharine and Bryant Mather International Symposium. ISBN: 9780870315992.
dc.relation.isbasedonKim T., Tae S., Roh S.: Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system. Renewable and Sustainable Energy Reviews, 25, 2013, pp. 729-741. https://doi.org/10.1016/j.rser.2013.05.013
dc.relation.isbasedonPenzel P., May M., Hahn L., et al.: Bond Modification of Carbon Rovings through Profiling. Materials, 15(16), 2022. https://doi.org/10.3390/ma15165581
dc.relation.isbasedonPenzel P., Lang T., Weigel P., et al.: Simulation of Tetrahedral Profiled Carbon Rovings for Concrete Reinforcements. Materials, 16(7), 2023. https://doi.org/10.3390/ma16072767
dc.relation.isbasedonWietek B.: Faserbeton – Im Bauwesen. 4. Auflage, Wiesbaden: Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH, 2024. ISBN: 978-3-658-44749-6
dc.relation.isbasedonKhaloo A., Daneshyar A., Rezaei B., et al.: Fiber bridging in polypropylene ‐ reinforced high ‐ strength concrete: An experimental and numerical survey. Structural Concrete, 23(1), 2022, pp. 457-472. https://doi.org/10.1002/suco.202000779
dc.relation.isbasedonZhao C., Wang Z., Zhu Z., et al.: Research on different types of fiber reinforced concrete in recent years: An overview. Construction and Building Materials, 365, 2023, pp. 130075. https://doi.org/10.1016/j.conbuildmat.2022.130075
dc.relation.isbasedonAfroughsabet V., Biolzi L., Ozbakkaloglu T.: Highperformance fiber-reinforced concrete: a review. J Mater Sci, 51(14), 2016, pp. 6517-6551. https://doi.org/10.1007/s10853-016-9917-4
dc.relation.isbasedonJenq Y., Shah S.: Crack Propagation in Fiber‐Reinforced Concrete. J. Struct. Eng., 112(1), 1986, pp. 19-34. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:1(19)
dc.relation.isbasedonFigueiredo T., Curosu I., Gonzáles G., et al.: Mechanical behavior of strain-hardening cement-based composites (SHCC) subjected to torsional loading and to combined torsional and axial loading. Materials & Design, 198, 2021, pp. 109371. https://doi.org/10.1016/j.matdes.2020.109371
dc.relation.isbasedonRaupach M., Morales Crus C.: Textile-reinforced concrete. In: TRIANTAFILLOU, T. (Ed.): Textile fibre composites in civil engineering. Vol. Number 60, Amsterdam, Boston, Cambridge, Heidelberg: Woodhead Publishing, 2016, pp. 275-299. ISBN: 9781782424697.
dc.relation.isbasedonCurbach M., Hegger J., Bielak J., et al.: New perspectives on carbon reinforced concrete structures—Why new composites need new design strategies. Civil Engineering Design 5(5-6), 2024, pp. 67-94. https://doi.org/10.1002/cend.202200008
dc.relation.isbasedonVo D., Sennewald C., Hoffmann G., et al.: Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites With Enhanced Structural Impact Tolerance, International Journal of Civil and Environmental Engineering 12(5), 2018, pp. 573-577.
dc.relation.isbasedonSennewald C.: Generative Struktur-, Technologie- und Webmaschinenentwicklung für unikale zellulare 3D Strukturen in Leichtbauweise. Technische Universität Dresden: Dissertation.
dc.relation.isbasedonVo D., Sennewald C., Golla A., et al.: Textile-Based 3D Truss Reinforcement for Cement-Based Composites Subjected to Impact Loading Part I: Development of Reinforcing Structure and Composite Characterization. MSF, 1063, 2022, pp. 121- 132. https://doi.org/10.4028/p-46f419
dc.relation.isbasedonLe Xuan H., Vo D., Nocke A., et al.: Textile-Based 3D Truss Reinforcement for Cement-Based Composites Subjected to Impact Loading - Part II: In Situ Stress Analysis under Quasistatic and Dynamic Tensile Loading. MSF, 1063, 2022, pp. 111-119. https://doi.org/10.4028/p-6n3ols
dc.relation.isbasedonLe Xuan H., Haentzsche E., Nocke A., et al.: Development of fiber-based piezoelectric sensors for the load monitoring of dynamically stressed fiber-reinforced composites. Smart Mater. Struct., 32(4), 2023, pp. 45013. https://doi.org/10.1088/1361-665X/acbd75
dc.relation.isbasedonLe Xuan H., Cherif C.: Textile-based strain sensors for fiberreinforced composites under tension, compression and bending. tm - Technisches Messen, 91(3-4), 2024, pp. 155- 167. https://doi.org/10.1515/teme-2023-0146
dc.relation.isbasedonCherif C.: Textile Materials for Lightweight Constructions – Technologies - Methods - Materials - Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. ISBN: 978-3- 662-46340-6.
dc.relation.isbasedonBornschein S.: Dornier Greiferwebmaschine P2 - Lindauer Dornier GmbH., online: https://www.lindauerdornier.com/de/webmaschinen/dorniergreiferwebmaschine-p2/ [cit. 29.07.2024]
dc.relation.isbasedonDuy M. P. Vo: Technology development of novel woven 3D cellular reinforcement for enhanced impact safety on the example of mineral-bonded composites. Dresden: Technische Universität Dresden: Institute of Textile Machinery and High Performance Material Technology, Dissertation, 2024.
dc.relation.isbasedonFreudenberg C., Friese D.: Carbonbetontechnikum Deutschland - Laboranlage zur Fertigung von profilierten Carbonpolymergarnen mit höchsten Verbundeigenschaften : Projekt-Schlussbericht : Zwanzig20 Carbon Concrete Composite - C³, 2020.
dc.relation.isbasedonHoffmann H.: Handbuch Umformen. München: Hanser Verlag, 2012. ISBN: 9783446430044
dc.relation.isbasedonLimaye M., Pradeep S., Kothari A., et al.: Thermoforming process effects on structural performance of carbon fiber reinforced thermoplastic composite parts through a manufacturing to response pathway. Composites Part B: Engineering, 235, 2022, pp. 109728. https://doi.org/10.1016/j.compositesb.2022.109728
dc.relation.isbasedonZhao J., Liebscher M., Tzounis L., et al.: Role of sizing agent on the microstructure morphology and mechanical properties of mineral-impregnated carbon-fiber (MCF) reinforcement made with geopolymers. Applied Surface Science, 567, 2021, pp. 150740. https://doi.org/10.1016/j.apsusc.2021.150740
dc.relation.isbasedonWienedmann G., Rothe H.: Review of Prepreg Technology. In: PRITCHARD, G. (Ed.): Developments in Reinforced Plastics-5. Dordrecht: Springer Netherlands, 1986, pp. 83- 119.
dc.relation.isbasedonJabbar M.; Nasreen A.: Composite fabrication and joining. Composite Solutions for Ballistics. Elsevier, 2021, pp. 177- 197. ISBN: 978-0-12-821984-3.
dc.relation.isbasedonRobert C., Pecur T., Maguire J., et al.: A novel powder-epoxy towpregging line for wind and tidal turbine blades. Composites Part B: Engineering, 203, 2020, pp. 108443. https://doi.org/10.1016/j.compositesb.2020.108443
dc.relation.isbasedonÇelik M., Noble T., Jorge F., et al.: Influence of Line Processing Parameters on Properties of Carbon Fibre Epoxy Towpreg. J. Compos. Sci., 6(3), 2022, pp. 75. https://doi.org/10.3390/jcs6030075
dc.relation.isbasedonAllred R.E., Wessond S.P., Babow D.A.: Powder Impregnation Studies for High Temperature Towpregs 2004, Proc. 49th Intl. SAMPE Symp. and Exhib.
dc.relation.isbasedonBayha T.D., et al.: Processing, properties and applications of composites using powder-coated epoxy towpreg technology - NASA Technical Reports Server (NTRS). Online: https://ntrs.nasa.gov/citations/19940010804 [cit. 08.08.2024].
dc.relation.isbasedonCarbon-Deutschland: Prepreg Carbon Rohr Wickelverfahren. Online: https://carbon-deutschland.de/carbon-rohrwickelverfahren-prepreg/
dc.relation.isbasedonTeijin Carbon Fiber Business: Towpreg: Teijin Carbon. Online: https://www.teijincarbon.com/products/thermosets/towpreg/ [cit. 07.08.2024]
dc.relation.ispartofFibres and Textiles
dc.subjectWoven cellular metalscs
dc.subject3D concrete reinforcementcs
dc.subjectHybrid structurecs
dc.subjectWeaving technologycs
dc.titleHYBRID 3D WOVEN STRUCTURES FOR CONCRETE REINFORCEMENT UNDER IMPACT LOADING PART 1: DEVELOPMENT OF A BI-AXIAL CORE DESIGNen
dc.typeArticleen
local.accessopen access
local.citation.epage20
local.citation.spage13
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue3-4
local.relation.volume31
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2024_3_4_2.pdf
Size:
748.06 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections