ANALYSIS OF AIRFLOW RESISTIVITY AND ACOUSTIC ABSORPTION OF FIBRE-REINFORCED PLASTIC COMPOSITES MADE OF POLYLACTIC ACID AND NATURAL FIBRES

dc.contributor.authorStehle, Franziska
dc.contributor.authorGillner, Christiane
dc.contributor.authorDilba, Boris
dc.contributor.authorKeuchel, Sören
dc.contributor.authorHerrmann, Axel S.
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2024-08-05T08:28:22Z
dc.date.available2024-08-05T08:28:22Z
dc.description.abstractThis study compares the airflow resistivity and acoustic properties of fibre-reinforced plastic composites (NFRP) with different mixing ratios of polylactic acid (PLA) and the natural fibres flax and cotton for the application in construction as lightweight structures, car door linings or seat pans. The composites are made from the binder fibre PLA, the bast fibre flax and two different kinds of cotton. Nonwovens are consolidated with a thermoforming process to manufacture the NFRP. The addition of cotton improves the absorption by increasing the number of air pockets (pores) and reducing their shape due to the fineness of the cotton. The airflow resistivity of samples with different mixing ratios were analysed and compared. The airflow resistivity is modelled with different calculation models that use distinct material parameters and the transferability is assessed. Further, the absorption coefficient is analysed and compared to the airflow resistivity. The study shows that there is a dependency of the two parameters.cs
dc.formattext
dc.format.extent9 stran
dc.identifier.doi10.15240/tul/008/2024-1-004
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/175242
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonBerger W., Faulstich H. Fischer P., et al.: Textile Faserstoffe. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.
dc.relation.isbasedonHottle T. A., Bilec M. M., Landis A. E.: Sustainability assessments of bio-based polymers. In: Polymer Degradation and Stability, 98(9), 2013, pp. 1898-1907. https://doi.org/10.1016/j.polymdegradstab.2013.06.016
dc.relation.isbasedonTrivedi A. K., Gupta M. K., Singh H.: PLA based biocomposites for sustainable products: A review. In: Advanced Industrial and Engineering Polymer Research, 6(4),2023, pp. 382-395. https://doi.org/10.1016/j.aiepr.2023.02.002
dc.relation.isbasedonDie Zukunft der Bauforschung, 2011, online: https://www.detail.de/artikel/die-zukunft-der-bauforschung4517/ [cit. 18.09.2023],
dc.relation.isbasedonArdente F., Beccali M., Cellura M., et al.: Building energy performance: A LCA case study of kenaf-fibres insulation board. In: Energy and Buildings, 40(1), 2008, pp. 1-10. https://doi.org/10.1016/j.enbuild.2006.12.009
dc.relation.isbasedonAsdrubali F.: The role of Life Cycle Assessment (LCA) in the design of sustainable buildings: thermal and sound insulating materials, EURONOISE, 2009, Edinburgh, Scotland.
dc.relation.isbasedonZabalza Bribián I., Valero Capilla A., Aranda Usón A.: Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. In: Building and Environment, 46(5),2011, pp. 1133-1140. https://doi.org/10.1016/j.buildenv.2010.12.002
dc.relation.isbasedonKayser O., Averesch N.: Technische Biochemie. Springer Fachmedien Wiesbaden, Wiesbaden, 2015.
dc.relation.isbasedonBauer M., Friede P., Uhlig C.: Sandwiches with Nap Cores. In: Kunststoffe International, 2006, pp. 95-97.
dc.relation.isbasedonGerber N., Dreyer C., Bauer M.: Noppenwabe als Kernmaterial - Kontinuierlich herstellbares Kernmaterial zur Funktionsintegration in Sandwichbauteilen. In: Konstruktion 3, 2015, pp. 14-16.
dc.relation.isbasedonHa G. X., Bernaschek A., Zehn M. W.: Experimentally examining the mechanical behaviour of nap-core sandwich material – A novel type of structural composite. In: Journal of Reinforced Plastics and Composites, 38(8), 2019, pp. 369- 378. https://doi.org/10.1177/0731684418820437
dc.relation.isbasedonFachagentur Nachwachsende Rohstoffe e. V. (Hrsg.): Biokunststoffe – Pflanzen, Rohstoffe, Produkte, 2020.
dc.relation.isbasedonKarosseriebautage Hamburg, Proceedings, 2014. http://dx.doi.org/10.1007/978-3-658-05980-4
dc.relation.isbasedonWu Y., Gao X., Wu J., et al.: Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports. In: Polymers, 15(14), 2023. https://doi.org/10.3390/polym15143096
dc.relation.isbasedonCox T. J., D'Antonio P.: Acoustic absorbers and diffusers – Theory, design, and application. Taylor & Francis, London, 2009.
dc.relation.isbasedonEinführung in die Akustik, 2023, online: https://bauakustikfachkreis.com/einfuehrung-in-die-akustik/ [cit. 18.09.2023].
dc.relation.isbasedonMöser M.: Technische Akustik. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.
dc.relation.isbasedonCrocker M. J. (ed.): Handbook of noise and vibration control. John Wiley, Hoboken N. J., 2007.
dc.relation.isbasedonSciencentris (Hrsg.): Proceedings of the 6th International Conference on Natural Fibers - Nature Inspired Sustainable Solutions, Portugal, 2023.
dc.relation.isbasedonMamtaz H., Fouladi M. H., Al-Atabi M., et al.: Acoustic Absorption of Natural Fiber Composites. In: Journal of Engineering, 2016. https://doi.org/10.1155/2016/5836107
dc.relation.isbasedonBallagh K. O.: Acoustical properties of wool. In: Applied Acoustics, 48(2), 1996, pp. 101-120. https://doi.org/10.1016/0003-682X(95)00042-8
dc.relation.isbasedonIngard K. U.: Notes on sound adsorption technology. Noise Control Foundation, Poughkeepsie, NY, 1995.
dc.relation.isbasedonHui Z., Fan X.: Sound Absorption Properties of Hemp Fibrous Assembly Absorbers. In: Sen'i Gakkaishi, 65(7), 2009, pp. 191-196. https://doi.org/10.2115/fiber.65.191
dc.relation.isbasedonSamsudin E. M., Ismail L. H., Kadir A. A.: A REVIEW ON PHYSICAL FACTORS INFLUENCING ABSORPTION PERFORMANCE OFFIBROUS SOUN D ABSORPTION MATERIAL FROM NATURAL FIBERS. In: ARPN Journal of Engineering and Applied Sciences, 11(6), 2016.
dc.relation.isbasedonBies D. A., Hansen C. H., Howard C. Q. (eds.): Engineering noise control. CRC Press, Boca Raton, FL, 2018.
dc.relation.isbasedonBast and other plant fibres. Textile Institute (Australia), Woodhead Publishing series in textiles no. 39, Woodhead, Cambridge, 2005.
dc.relation.isbasedonASTM-C0830-00R23: ASTM-C830: Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure. Ausgabe August 2023.
dc.relation.isbasedonDIN EN ISO 9053-2:2021-02, Akustik_- Bestimmung des Strömungswiderstandes_- Teil_2: Luftwechselstromverfahren (ISO_9053-2:2020); Deutsche Fassung EN_ISO_9053-2:2020.
dc.relation.isbasedonDIN EN ISO 10534-2:2001-10, Akustik_- Bestimmung des Schallabsorptionsgrades und der Impedanz in Impedanzrohren_- Teil_2: Verfahren mit Übertragungsfunktion (ISO_10534-2:1998); Deutsche Fassung EN_ISO_10534-2:2001.
dc.relation.isbasedonMüller G., Möser M.: Taschenbuch der Technischen Akustik. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.
dc.relation.isbasedonMechel F. P. (ed.): Formulas of Acoustics, SpringerLink Bücher, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
dc.relation.isbasedonBies D. A., Hansen C. H.: Flow resistance information for acoustical design. In: Applied Acoustics, 13(5), 1980, pp. 357-391. https://doi.org/10.1016/0003-682X(80)90002-X
dc.relation.isbasedonManning J., Panneton R.: Acoustical model for Shoddybased fiber sound absorbers. In: Textile Research Journal, 83(13), 2013, pp. 1356-1370. https://doi.org/10.1177/0040517512470196
dc.relation.isbasedonYang T., Mishra R., Horoshenkov K. V., et al.: A study of some airflow resistivity models for multi-component polyester fiber assembly. In: Applied Acoustics, 139, 2018, pp. 75-81. https://doi.org/10.1016/j.apacoust.2018.04.023
dc.relation.isbasedonPelegrinis M. T., Horoshenkov K. V., Burnett A.: An application of Kozeny–Carman flow resistivity model to predict the acoustical properties of polyester fibre. In: Applied Acoustics, 101(5), 2016, pp. 1-4. https://doi.org/10.1016/j.apacoust.2015.07.019
dc.relation.isbasedonDallaValle J. M.: Flow of Gases through Porous Media . P. C. Carman. Academic Press, New York; Butterworths, London, 1956. 182 p. Illus. $6. In: Science 124(3234), 1956, pp. 1254- 1255. https://doi.org/10.1126/science.124.3234.1254.b
dc.relation.ispartofFibres and Textiles
dc.subjectNatural fibrescs
dc.subjectPLAcs
dc.subjectFibre-reinforced compositescs
dc.subjectThermoformingcs
dc.subjectAirflow resistivitycs
dc.subjectAcousticcs
dc.titleANALYSIS OF AIRFLOW RESISTIVITY AND ACOUSTIC ABSORPTION OF FIBRE-REINFORCED PLASTIC COMPOSITES MADE OF POLYLACTIC ACID AND NATURAL FIBRESen
dc.typeArticleen
local.accessopen access
local.citation.epage45
local.citation.spage37
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue1
local.relation.volume31
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2024_1_4.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections