INFLUENCE OF ANTISTATIC POLYESTER FIBERS ON THE PROPERTIES OF COTTON AND POLYESTER SINGLE JERSEY KNITTED FABRICS

dc.contributor.authorAsfand, Norina
dc.contributor.authorBasra, Sikander Abbas
dc.contributor.authorDaukantienė, Virginija
dc.contributor.authorJamshaid, Hafsa
dc.contributor.authorAli, Zulfiqar
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2022-03-25T09:02:25Z
dc.date.available2022-03-25T09:02:25Z
dc.description.abstractIn this research, the influence of the antistatic polyester fibers containing carbon black on the comfort properties of 100% and blended cotton as well as on 100% and blended polyester single jersey knitted fabrics was evaluated. The research results revealed that the behavior of the investigated knitted fabrics was dependent on their structure and mechanical characteristics. The electrical resistance of knitted fabrics decreased significantly due to the use of 4% antistatic polyester fibers. The electrical resistance of the pure and blended cotton knitted fabric was lower than that of the pure and blended polyester knitted fabrics. Antistatic polyester fibers positively influenced the air permeability of the polyester knitted fabric. The air permeability of 100% and blended cotton fabrics was approximately 3.5 times compared to both 100% and blended polyester fabrics, respectively. The carbon black polyester fibers influenced the decrease in thermal resistance, the increase in vapor permeability, and the minor increase in vapor resistance of both cotton and polyester knitted fabrics. Thermal resistance was lower, water vapor resistance was significantly higher, and relative water vapor permeability was slightly lower for the cotton and cotton/antistatic polyester knitted fabrics than for the polyester and polyester / antistatic polyester knitted fabrics, respectively. Therefore, the research results revealed that the presence of 4% antistatic polyester fibers in cotton and polyester knitted fabrics positively influenced their antistatic behavior and improved or almost did not alter their comfort properties.cs
dc.formattext
dc.format.extent7 stran
dc.identifier.doi10.15240/tul/008/2022-1-002
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/163505
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonMielicka E., Janicka J., Kozminska R., Walak A.: Three-layer knitted materials for protective clothing, IOP Conference Series of Material Science and Engineering 141:012003, 2016, https://iopscience.iop.org/article/10.1088/1757- 899X/141/1/012003
dc.relation.isbasedonDonciu C.: Core conductive yarn based integral knitted ESD garments part I. Metallic core conductive yarns investigation, Advance Material Research 772, 2013, pp. 467-473, https://doi.org/10.4028/www.scientific.net/AMR.772.4 67
dc.relation.isbasedonHebeish A.A., El-Gamal M.A., Said T.S., Abd El-Hady R.A.M.: Major factors affecting the performance of ESD-protective fabrics, Journal of Textile Institute 101(5), 2010, pp. 389-398, https://doi.org/10.1080/01445340802442096
dc.relation.isbasedonDonciu C.: Core conductive yarn based integral knitted ESD garments part II. Carbon composite yarns investigation, Advance Material Research 772, 2013, pp. 474-479, https://doi.org/10.4028/www.scientific.net/AMR.772.4 74
dc.relation.isbasedonDonciu C.: ESD Garments with bilayer structure, Advance Material Research 837, 2013, pp. 682-687, https://doi.org/10.4028/www.scientific.net/AMR.837.6 82
dc.relation.isbasedonKim H.A., Kim S.J.: Flame retardant, anti-static and wear comfort properties of modacrylic/Excel® /antistatic PET blend yarns and their knitted fabrics, Journal of Textile Institute 110(9), 2019 1318-1328: https://doi.org/10.1080/00405000.2019.1565626
dc.relation.isbasedonKwon S.O., Park C.H., Kim J.: Breathable, antistatic and superhydrophobic PET/Lyocell fabric, Journal of Engineered Fiber and Fabrics 10(3), 2015, pp. 46- 56, https://doi.org/10.1177/155892501501000317
dc.relation.isbasedonSeshadri D.T., Bhat N.V.: Synthesis and properties of cotton fabrics modified with polypyrrole, Sen'i Gakkaishi 61(4), 2018, pp. 103-108, https://doi.org/10.2115/fiber.61.103
dc.relation.isbasedonAbdel-Halim E.S., Abdel-Mohdy F.A., Al-Deyabb S.S., El-Newehy M.H.: Chitosan and monochlorotriazinyl-βcyclodextrin finishes improve antistatic properties of cotton/polyester blend and polyester fabrics, Carbohydrate Polymer 82(1), 2010, pp. 202-208, https://doi.org/10.1016/j.carbpol.2010.04.077
dc.relation.isbasedonPasta M., La Mantia F., Hu L., Deshazer H.D., Cui Y.: Aqueous supercapacitors on conductive cotton, Nano Research 3, 2010, pp. 452-458, https://doi.org/10.1007/s12274-010-0006-8
dc.relation.isbasedonGultekin N.D., Usta I.: Investigation of thermal and electrical conductivity properties of carbon black coated cotton fabrics, Marmara Journal of Pure and Applied Science 27(0), 2015, pp. 91-94, https://dergipark.org.tr/en/pub/marufbd/issue/17889/1 87532
dc.relation.isbasedonHu C.C., Chang S.S. Liang N.Y.: Fabrication of antistatic fibers with core/sheath and segmentedpie configurations, Journal of Industrial Textiles 47(5), 2018, pp. 569-586, https://doi.org/10.1177/1528083716665629
dc.relation.isbasedonISO 139-2005. Textiles. Standard atmospheres for conditioning and testing, https://www.iso.org/standard/35179.html
dc.relation.isbasedonASTM D2256-2015: Standard test method for tensile properties of yarns by the single-strand method, https://www.admet.com/testing-applications/testingstandards/astm-d2256-thread-and-yarn-tensiletesting/
dc.relation.isbasedonISO 17202-2002: Textiles. Determination of twist in single spun yarns. Untwist/retwist method, https://www.iso.org/standard/30582.html
dc.relation.isbasedonAATCC 135-2018. Test method for dimensional changes of fabrics after home laundering, https://members.aatcc.org/store/tm135/543/
dc.relation.isbasedonASTM D1777-2019: Standard test method for thickness of textile materials, https://global.ihs.com/doc_detail.cfm?document_nam e=ASTM%20D1777&item_s_key=00016040
dc.relation.isbasedonASTM D3776-2017: Standard test methods for mass per unit area (weight) of fabric, https://www.techstreet.com/standards/astm-d3776- d3776m-20?product_id=2183505
dc.relation.isbasedonASTM D8007-2019: Standard test method for wale and course count of weft knitted fabrics, https://global.ihs.com/doc_detail.cfm?document_nam e=ASTM%20D8007&item_s_key=00661424
dc.relation.isbasedonPeirce F.T.: Geometrical principles applicable to the design of functional fabrics, Textile Research Journal 17(3), 1947, pp. 123-147, https://doi.org/10.1177/004051754701700301
dc.relation.isbasedonHes L.: Permetest manual, Sensora instruments and consulting, REG. No. 183 306 81, VAT No. CZ440128092, Liberec, Czech Republic, http://www.sensora.eu/PermetestManual09.pdf
dc.relation.isbasedonISO 11092-2014: Textiles. Physiological effects. Measurement of thermal and water-vapour resistance under steady-state conditions (sweating guardedhotplate test), https://www.iso.org/standard/65962.html
dc.relation.isbasedonISO 9237-1995: Textiles. Determination of the permeability of fabrics to air, https://www.iso.org/standard/16869.html
dc.relation.isbasedonYang M., Fu Ch., Xia Z., Cheng D., Cai G., Tang B., Wang X.: Conductive and durable CNT-cotton ring spun yarns, Cellulose 25, 2018, pp. 4239-4249, https://doi.org/10.1007/s10570-018-1839-7
dc.relation.isbasedonTelipan G., Morari C., Moașa B.: Electromagnetic shielding characterization of several conductive textiles, Bulletin of the Transilvania University of Brasov, Series I: Engineering Sciences 10(1), 2017, pp. 17-24, https://www.researchgate.net/publication/317880482_ electromagnetic_shielding_characterization_of_sever al_conductive_textiles
dc.relation.isbasedonVarnaitė Žuravliova S., Stygienė L., Čepliauskienė R., Krauledas S., Sankauskaitė A.: The influence of three-layer knitted fabrics’ structure on electrostatic and comfort properties, Material Science (Medžiagotyra) 19(4), 2013, pp. 415-419, https://doi.org/10.5755/j01.ms.19.4.2235
dc.relation.isbasedonVarnaitė Žuravliova S., Sankauskaitė A., Stygienė L., Krauledas S., Bekampienė P., Milčienė I.: The investigation of barrier and comfort properties of multifunctional coated conductive knitted fabrics, Journal of Industrial Textile 45(4), 2016, pp. 585-610, https://doi.org/10.1177/1528083714564637
dc.relation.ispartofFibres and Textiles
dc.subjectknitted fabriccs
dc.subjectpolyestercs
dc.subjectcottoncs
dc.subjectblack carboncs
dc.subjectantistatic propertiescs
dc.subjectcomfort propertiescs
dc.titleINFLUENCE OF ANTISTATIC POLYESTER FIBERS ON THE PROPERTIES OF COTTON AND POLYESTER SINGLE JERSEY KNITTED FABRICSen
dc.typeArticleen
local.accessopen access
local.citation.epage16
local.citation.spage10
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue1
local.relation.volume29
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
INFLUENCE OF ANTISTATIC POLYESTER FIBERS.pdf
Size:
866.93 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections