A PRELIMINARY STUDY EXAMINING THE BURST STRENGTH OF VASCULAR TUBULAR SCAFFOLDS

dc.contributor.authorOZTEMUR, JANSET
dc.contributor.authorÖZDEMIR, SUZAN
dc.contributor.authorSEZGIN, HANDE
dc.contributor.authorYALCIN-ENIS, IPEK
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2023-04-19T09:20:50Z
dc.date.available2023-04-19T09:20:50Z
dc.description.abstractIn this study, neat PCL, neat PLA and PLA/PCL (50/50) based tubular surfaces are produced by electrospinning to simulate the native blood vessel structure and to investigate the effects of both graft material and fiber orientation on burst strength. The burst pressure values of these vascular graft structures that designed with both randomly oriented fibers and oriented fibers, measured by a custom- burst pressure tester, and the results are compared. The results show that fiber orientation have a great influence on burst pressure, regardless of the type of biomaterial. It is determined that grafts with oriented fibers have at least twice the burst strength than those with random fibers. The findings indicate that changing the graft material has also an effect on burst strength. When the results are analyzed by polymer type, although the PLA100_O sample has the highest burst strength among all oriented fiber sample groups, it is better to determine the vascular graft candidate by taking into account radial elasticity.cs
dc.formattext
dc.format.extent4 strany
dc.identifier.doi10.15240/tul/008/2023-1-012
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/167241
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonGhiasi, M. M., Zendehboudi, S., & Mohsenipour, A. A. (2020). Decision tree-based diagnosis of coronary artery disease: CART model. Computer Methods and Programs in Biomedicine, 192, 105400 https://doi.org/10.1016/j.cmpb.2020.105400
dc.relation.isbasedonHao, D., Fan, Y., Xiao, W., Liu, R., Pivetti, C., Walimbe, T., … Wang, A. (2020). Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomaterialia, 108, 178–193. https://doi.org/10.1016/j.actbio.2020.03.005
dc.relation.isbasedonZhang, F., Bambharoliya, T., Xie, Y., Liu, L., Celik, H., Wang, L., … King, M. W. (2021). A hybrid vascular graft harnessing the superior mechanical properties of synthetic fibers and the biological performance of collagen filaments. Materials Science and Engineering C, 118(May 2020), 111418. https://doi.org/10.1016/j.msec.2020.111418
dc.relation.isbasedonSpadaccio, C., Nappi, F., De Marco, F., Sedati, P., Sutherland, F. W. H., Chello, M., … Rainer, A. (2016). Preliminary in vivo evaluation of a hybrid armored vascular graft combining electrospinning and additive manufacturing techniques. Drug Target Insights, 10, 1–7. https://doi.org/10.4137/DTI.s35202
dc.relation.isbasedonYalcin, I., Horakova, J., Mikes, P., Sadikoglu, T. G., Domin, R., & Lukas, D. (2014). Design of Polycaprolactone Vascular Grafts. Journal of Industrial Textiles, 45(5). https://doi.org/10.1177/1528083714540701
dc.relation.isbasedonOztemur, J., & Yalcin-Enis, I. (2021). Development of biodegradable webs of PLA/PCL blends prepared via electrospinning: Morphological, chemical, and thermal characterization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 109(11), 1844–1856. https://doi.org/10.1002/jbm.b.34846
dc.relation.isbasedonOztemur, J., & Yalcin Enis, I. (2020). The Role of Biopolymer Selection in the Design of Electrospun Small Caliber Vascular Grafts to Replace the Native Arterial Structure. In A. Hayaloğlu (Ed.), Theory and Research in Engineering (First, pp. 167–192). Gece Kitaplığı.
dc.relation.isbasedonHiob, M. A., She, S., Muiznieks, L. D., & Weiss, A. S. (2017). Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomaterials Science and Engineering, 3(5), 712–723. https://doi.org/10.1021/acsbiomaterials.6b00220
dc.relation.isbasedonKonig, G., McAllister, T. N., Dusserre, N., Garrido, S. A., Iyican, C., Marini, A., … L’Heureux, N. (2009). Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials, 30(8), 1542– 1550. https://doi.org/10.1016/j.biomaterials.2008.11.011
dc.relation.isbasedonZamani, M., Khafaji, M., Naji, M., Vossoughi, M., Alemzadeh, I., & Haghighipour, N. (2017). A Biomimetic Heparinized Composite Silk-Based Vascular Scaffold with sustained Antithrombogenicity. Scientific Reports, 7(1), 1– 14. https://doi.org/10.1038/s41598-017-04510-1
dc.relation.isbasedonGao, J., Chen, S., Tang, D., Jiang, L., Shi, J., & Wang, S. (2019). Mechanical Properties and Degradability of Electrospun PCL/PLGA Blended Scaffolds as Vascular Grafts. Transactions of Tianjin University, 25(2), 152–160. https://doi.org/10.1007/s12209-018-0152-8
dc.relation.isbasedonYalcin Enis, I., Horakova, J., Gok Sadikoglu, T., Novak, O., & Lukas, D. (2017). Mechanical investigation of bilayer vascular grafts electrospun from aliphatic polyesters. Polymers for Advanced Technologies, 28(2), 201–213. https://doi.org/10.1002/pat.3875
dc.relation.isbasedonMcClure, M. J., Sell, S. A., Ayres, C. E., Simpson, D. G., & Bowlin, G. L. (2009). Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: Geometry for a vascular matrix. Biomedical Materials, 4(5). https://doi.org/10.1088/1748-6041/4/5/055010
dc.relation.isbasedonGrasl, C., Stoiber, M., Röhrich, M., Moscato, F., Bergmeister, H., & Schima, H. (2021). Electrospinning of small diameter vascular grafts with preferential fiber directions and comparison of their mechanical behavior with native rat aortas. Materials Science and Engineering C, 124(October 2020). https://doi.org/10.1016/j.msec.2021.112085
dc.relation.isbasedonDe Valence, S., Tille, J. C., Giliberto, J. P., Mrowczynski, W., Gurny, R., Walpoth, B. H., & Möller, M. (2012). Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomaterialia, 8(11), 3914–3920. https://doi.org/10.1016/j.actbio.2012.06.035
dc.relation.isbasedonPawar, R. P., Tekale, S. U., Shisodia, S. U., Totre, J. T., & Domb, A. J. (2014). Biomedical Applications of Poly ( Lactic Acid ). 40–51.
dc.relation.ispartofFibres and Textiles
dc.subjectVascular graftcs
dc.subjectFiber orientationcs
dc.subjectBurst pressurecs
dc.subjectMechanical propertiescs
dc.subjectElectrospinningcs
dc.titleA PRELIMINARY STUDY EXAMINING THE BURST STRENGTH OF VASCULAR TUBULAR SCAFFOLDSen
dc.typeArticleen
local.accessopen access
local.citation.epage75
local.citation.spage72
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue1
local.relation.volume30
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2023_1_12.pdf
Size:
154.86 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections