SYNCHROTRON BASED X-RAY ABSORPTION SPECTROS-COPY FOR STRUCTURAL ANALYSIS OF BASALT FIBERS

dc.contributor.authorLichtenberg, Henning
dc.contributor.authorMahltig, Boris
dc.contributor.authorKlysubun, Wantana
dc.contributor.authorPrange, Alexander
dc.contributor.authorHormes, Josef
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2024-10-01T09:40:44Z
dc.date.available2024-10-01T09:40:44Z
dc.description.abstractX-ray Absorption Near Edge Structure (XANES) spectroscopy at the Synchrotron Light Research Institute (Thailand) was used to investigate temperature related structural changes in basalt fibers. As a first step, XANES spectra of fiber samples cut from a basalt roving heated for 1 hour at 800 °C were recorded at the K absorption edges of three chemical elements and compared with the spectra of the untreated fibers. Silicon and calcium K-edge XANES spectra of the fibers were not affected by heating, whereas iron K-edge XANES spectra were significantly influenced by heating at 800 °C. The high iron content in basalt fibers has been attributed to their higher thermal stability compared to common natural or synthetic fibers. As a next step, iron K-edge XANES spectra of two types of fibers (basalt roving and uncoated chopped fibers) were recorded after heating at temperatures between 600 °C and 900 °C. In both cases, with increasing temperature the absorption edge shifts to higher energies, indicating progressing oxidation of the iron atoms in the fibers. These experiments demonstrate the potential of X-ray absorption spectroscopy as a powerful analytical tool to investigate structural changes in basalt fibers upon heating and to correlate them with changes in their mechanical properties.cs
dc.formattext
dc.format.extent10 stran
dc.identifier.doi10.15240/tul/008/2024-2-008
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/175351
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonCooke T.F.: Inorganic fibers - a literature review, J. Am. Ceram. Soc. 74(12), 1991, pp. 2959-2978. https://doi.org/10.1111/j.1151-2916.1991.tb04289.x
dc.relation.isbasedonMahltig B.: Introduction to inorganic fibers. Book chapter in: Inorganic and composite fibers, Mahltig B., Kyosev Y. (Eds.) Woodhead Publishing – Elsevier, Duxford, UK, 2018, pp. 1- 30.
dc.relation.isbasedonTeschner R.: Glasfasern, Springer-Vieweg, Berlin, 2019, 2nd Edition.
dc.relation.isbasedonPico D., Wilms C., Seide G., et al.: Natural volcanic rock fibers, Chem. Fibers Int. 61(2), 2011, pp. 90-92.
dc.relation.isbasedonSchawaller D., Clauß B., Buchmeiser M.R.: Ceramic filament fibers–a review, Macromol. Mater. Eng. 297(6), 2012, pp. 502-522.
dc.relation.isbasedonMahltig B., Kyosev Y.: Inorganic and composite fibers, Woodhead Publishing – Elsevier, Duxford, UK, 2018
dc.relation.isbasedonYlmaz V.T., Lachowski E.E., Glasser F.P.: Chemical and microstructural changes at alkali ‐ resistant glass fiber – cement interfaces, J. Am. Ceram. Soc. 74(12), 1991, pp. 3054-3060. https://doi.org/10.1111/j.1151-2916.1991.tb04301.x
dc.relation.isbasedonKumbhar V.P.: An overview: basalt rock fibers-new construction material, Acta Eng. Intl. 2(1), 2014, pp. 11-18.
dc.relation.isbasedonIvanitskii S.G., Gorbachev G.F.: Continuous basalt fibers: production aspects and simulation of forming processes I: State of the art in continuous basalt fiber technologies, Powder Metall. Met. C+ 50(3), 2011, pp. 125-129. https://doi.org/10.1007/s11106-011-9309-x
dc.relation.isbasedonMahltig B., Kyosev Y. (ed.): Basalt fibers, Book chapter in: Inorganic and composite fibers, Woodhead Publishing – Elsevier, Duxford, UK, 2018, pp. 195-218
dc.relation.isbasedonDing L., Liu Y., Liu J., et al.: Correlation analysis of tensile strength and chemical composition of basalt fiber roving, Polym. Composite. 40(7), 2019, pp. 2959-2966. https://doi.org/10.1002/pc.25138
dc.relation.isbasedonDeák T., Czigány T.: Chemical composition and mechanical properties of basalt and glass fibers: a comparison. Textile Res. J. 2009, 79(7), pp. 645-651. https://doi.org/10.1177/0040517508095597
dc.relation.isbasedonJamshaid H., Mishra R.: A green material from rock: basalt fiber – a review, J. Text. I. 107(7), 2016, pp. 923-937. https://doi.org/10.1080/00405000.2015.1071940
dc.relation.isbasedonDonald S.B., Swink A.M., Schreiber H.D.: High-iron ferric glass, J. Non-Cryst. Solids 352(6-7), 2006, pp. 539-543. https://doi.org/10.1016/j.jnoncrysol.2005.11.042
dc.relation.isbasedonSchreurs J.W., Brill R.H.: Iron and sulfur related colors in ancient glasses, Archaeometry 26(2), 1984, pp. 199-209. https://doi.org/10.1111/j.1475-4754.1984.tb00334.x
dc.relation.isbasedonBacon F.R., Billian C.J.: Color and spectral transmittance of amber bottle glass, J. Am. Ceram. Soc. 37(2), 1954, pp. 60- 66. https://doi.org/10.1111/j.1151-2916.1954.tb14006.x
dc.relation.isbasedonDhand V., Mittal G., Rhee K.Y., et al.: A short review on basalt fiber reinforced polymer composites, Compos. Part BEng. 73, 2015, pp. 166-180. https://doi.org/10.1016/j.compositesb.2014.12.011
dc.relation.isbasedonKhandelwal S., Rhee K.Y.: Recent advances in basalt-fiberreinforced composites: Tailoring the fiber-matrix interface. Compos. Part B-Eng. 192, 2020, 108011 p. https://doi.org/10.1016/j.compositesb.2020.108011
dc.relation.isbasedonHao L., Yu W.: Evaluation of thermal protective performance of basalt fiber nonwoven fabrics, J. Thermal Anal. Calor. 100(2), 2010, pp. 551-555. https://doi.org/10.1007/s10973-009-0179-0
dc.relation.isbasedonMoiseev E.A., Gutnikov S.I., Malakho A.P., et al.: Effect of iron oxides on the fabrication and properties of continuous glass fibers, Inorg. Mater. 44, 2008, pp. 1026–1030. https://doi.org/10.1134/S0020168508090215
dc.relation.isbasedonGutnikov S.I., Manylov M.S., Lipatov Ya.V., et al.: Effect of the reduction treatment on the basalt continuous fiber crystallization properties, J. Non-Cryst. Solids 368, 2013, pp. 45–50. https://doi.org/10.1016/j.jnoncrysol.2013.03.007
dc.relation.isbasedonGutnikov S.I., Manylov M.S., Lazoryak B.I.: Crystallization and thermal stability of the P-doped basaltic glass fibers. Minerals 9(10), 2019, pp. 615. https://doi.org/10.3390/min9100615
dc.relation.isbasedonOverkamp T., Mahltig B., Kyosev Y.: Strength of basalt fibers influenced by thermal and chemical treatments. J. Ind. Text. 47(5), 2018, pp. 815-833. https://doi.org/10.1177/1528083716674905.x
dc.relation.isbasedonFiore V., Scalici T., Di Bella G., et al.: A review on basalt fibre and its composites, Compos. Part B-Eng. 74, 2015, pp. 74– 94. https://doi.org/10.1016/j.compositesb.2014.12.034
dc.relation.isbasedonLipatov Y.V., Arkhangelsky I.V., Dunaev A.V., et al.: Crystallization of zirconia doped basalt fibers, Thermochim. Acta 575, 2014, pp. 238–243. https://doi.org/10.1016/j.tca.2013.11.002
dc.relation.isbasedonBunker G.: Introduction to XAFS, Cambridge University Press, 2010.
dc.relation.isbasedonCalvin S.: XAFS for Everyone, CRC Press, 2013
dc.relation.isbasedonNewville M.: Fundamentals of XAFS, Rev. Mineral. Geochem.78 (1), 2014, pp. 33–74. https://doi.org/10.2138/rmg.2014.78.2
dc.relation.isbasedonSharma S.K., Verma D.S. (ed.): Handbook of materials characterization, Cham: Springer, chapter 13, 2018.
dc.relation.isbasedonD'Amico S., Venuti V. (ed.): Handbook of cultural heritage analysis, Cham: Springer (Springer nature reference), 2022.
dc.relation.isbasedonGates W.P., Bergaya F., Theng B.K.G., et al. (ed.): X-ray absorption spectroscopy, Handbook of Clay Science, Chapter 12.3, Developments in clay science 1, 2006, pp. 789 – 864.
dc.relation.isbasedonBuzanich A.G.: Recent developments of X-ray absorption spectroscopy as analytical tool for biological and biomedical applications, X-Ray Spectrom. 51(3), 2022, pp. 294–303. https://doi.org/10.1002/xrs.3254
dc.relation.isbasedonIglesias-Juez A., Chiarello G.L., Patience G.S., et al.: Experimental methods in chemical engineering: X-ray absorption spectroscopy — XAS, XANES, EXAFS. Can. J. Chem. Eng. 100(1), 2022, pp. 3–22. https://doi.org/10.1002/cjce.24291
dc.relation.isbasedonIwasawa Y., Asakura K., Tada M. (ed.): XAFS techniques for catalysts, nanomaterials, and surfaces, Cham: Springer International Publishing, 2017, online: http://dx.doi.org/10.1007/978-3-319-43866-5
dc.relation.isbasedonPrange A., Modrow H.: X-ray absorption spectroscopy and its application in biological, agricultural and environmental research., Rev. Environ. Sci. Bio. 1(4), 2002, pp. 259–276. https://doi.org/10.1023/A:1023281303220
dc.relation.isbasedonMahltig B.: High-performance fibres – A review of properties and IR-spectra, Tekstilec 64, 2021, pp. 96-118. https://doi.org/10.14502/Tekstilec2021.64.96-118
dc.relation.isbasedonMahltig B., Grethe T.: High-performance and functional fiber materials—A review of properties, scanning electron microscopy SEM and electron dispersive spectroscopy EDS, Textiles 2, 2022, pp. 209-252. https://doi.org/10.3390/textiles2020012
dc.relation.isbasedonRuffen C., Mahltig B.: Basalt fibers as functional additives in coating of textiles, J. Coat. Technol. Res. 18, 2021, pp. 271- 281. https://doi.org/10.1007/s11998-020-00383-8
dc.relation.isbasedonKlysubun W., Sombunchoo P., Wongprachanukul N., et al.: Commissioning and performance of X-ray absorption spectroscopy beamline at the Siam Photon Laboratory, Nucl. Instrum. Meth. A 582, 2007, pp. 87–89. https://doi.org/10.1016/j.nima.2007.08.067
dc.relation.isbasedonKlysubun W., Tarawarakarn P., Thamsanong N., et al.: Upgrade of SLRI BL8 beamline for XAFS spectroscopy in a photon energy range of 1–13 keV, Radiat. Phys. Chem. 175, 2020, 108145 p. https://doi.org/10.1016/j.radphyschem.2019.02.004
dc.relation.isbasedonKlysubun W., Sombunchoo P., Deenan W., et al.: Performance and status of beamline BL8 at SLRI for X-ray absorption spectroscopy, J. Synchrotron Radiat. 19, 2012, pp. 930–936. https://doi.org/10.1107/S0909049512040381
dc.relation.isbasedonCooper R.F., Fanselow J.B., Poker D.B.: The mechanism of oxidation of a basaltic glass: Chemical diffusion of networkmodifying cations, Geochim. Cosmochim. Ac. 60(17), 1996, pp. 3253–3265. https://doi.org/10.1016/0016-7037(96)00160-3
dc.relation.isbasedonYilmaz S., Özkan O.T., Günay V.: Crystallization kinetics of basalt glass, Ceram. Int. 22(6), 1996, pp. 477–481. https://doi.org/10.1016/0272-8842(95)00118-2
dc.relation.isbasedonMorozov N.N., Bakunov V.S., Morozov E.N., et al.: Materials based on basalts from the European north of Russia, Glass Ceram+ 58 (3/4), 2001, pp. 100–104. https://doi.org/10.1023/a:1010947415202
dc.relation.isbasedonBurkhard D.J.M.: Crystallization and oxidation of Kilauea basalt glass: Processes during reheating experiments, J. Petrology 42(3), 2001, pp. 507–527. https://doi.org/10.1093/petrology/42.3.507
dc.relation.isbasedonChen X., Zhang Y., Hui D., et al.: Study of melting properties of basalt based on their mineral components, Compos. Part B-Eng. 116, 2017, pp. 53–60. https://doi.org/10.1016/j.compositesb.2017.02.014
dc.relation.isbasedonRavel B., Newville M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12, 2005, pp. 537–541. https://doi.org/10.1107/S0909049505012719
dc.relation.isbasedonHenderson G.S., De Groot F.M.F., Moulton B.J.A.: X-ray absorption near-edge structure (XANES) spectroscopy. Henderson G.S., Neuville D.R., Downs R.T. (ed.): Spectroscopic methods in mineralogy and materials sciences, Boston, Chantilly, Virginia: DE GRUYTER; Mineralogical Society of America, Rev. Mineral. Geochem. 78, 2015, pp. 75–138.
dc.relation.isbasedonLi D., Bancroft G.M., Kasrai M., et al.: X-ray absorption spectroscopy of silicon dioxide (SiO2) polymorphs: The structural characterization of opal, Am. Mineral. 79, 1994, pp. 622–632.
dc.relation.isbasedonLi D., Bancroft G.M., Fleet M.E., et al.: Silicon K-edge XANES spectra of silicate minerals, Phys. Chem. Miner. 22, 1995, pp. 115-122.
dc.relation.isbasedonGilbert B., Frazer B.H., Naab F., et al.: X-ray absorption spectroscopy of silicates for in situ, sub-micrometer mineral identification, Am. Mineral. 88, 2003, pp. 763–769. https://doi.org/10.2138/am-2003-5-605
dc.relation.isbasedonDe Ligny D., Neuville D.R., Cormier L., et al.: Silica polymorphs, glass and melt: An in situ high temperature XAS study at the Si K-edge, J. Non-Cryst. Solids 355, 2009, pp. 1099-1102.
dc.relation.isbasedonHormes J., Klysubun W., Göttert J., et al.: A new SOLARIS beamline optimized for X-ray spectroscopy in the tender energy range, Nucl. Instrum. Meth. B 489, 2021, pp. 76–81. https://doi.org/10.1016/j.nimb.2020.12.017
dc.relation.isbasedonDavoli I., Paris E., Stizza S., et al.: Structure of densified vitreous silica – silicon and oxygen XANES spectra and multiple-scattering calculations, Phys. Chem. Miner. 19, 1992, pp. 171-175.
dc.relation.isbasedonHenderson G.S., Fleet M.E.: The structure of titanium silicate glasses investigated by Si K-edge X-ray absorption spectroscopy, J. Non-Cryst. Solids 211, 1997, pp. 214-221.
dc.relation.isbasedonDe Wispelaere S., Cabaret D., Levelut C., et al.: Na-, Al- and Si K-edge XANES study of sodium silicate and sodium aluminosilicate glasses: influence of the glass surface, Chem. Geol. 213, 2004, pp. 63-70.
dc.relation.isbasedonCabaret D., Le Grand M., Ramos A., et al.: Medium range structure of borosilicate glasses from Si K-edge XANES: a combined approach based on multiple scattering and molecular dynamics calculations, J. Non-Cryst. Solids 289(1- 3), 2001, pp. 1–8. https://doi.org/10.1016/S0022-3093(01)00733-5
dc.relation.isbasedonMilitký J., Kovačič V., Rubnerová J.: Influence of thermal treatment on tensile failure of basalt fibers, Eng. Fract. Mech. 69(9), 2002, pp. 1025–1033. https://doi.org/10.1016/S0013-7944(01)00119-9
dc.relation.isbasedonTamás-Bényei P., Sántha P.: Potential applications of basalt fibre composites in thermal shielding, J. Therm. Anal. Calorim. 148(2), 2023, pp. 271–279. https://doi.org/10.1007/s10973-022-11799-2
dc.relation.isbasedonCormier L., Neuville D.R.: Ca and Na environments in Na2O– CaO–Al2O3–SiO2 glasses: influence of cation mixing and cation-network interactions, Chem. Geol. 213(1-3), 2004, pp. 103–113. https://doi.org/10.1016/j.chemgeo.2004.08.049
dc.relation.isbasedonNeuville D.R., Cormier L., Flank A.M., et al.: Al speciation and Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-edge X-ray absorption spectroscopy, Chem. Geol. 213(1-3), 2004, pp. 153–163. https://doi.org/10.1016/j.chemgeo.2004.08.039
dc.relation.isbasedonMorizet Y., Trcera N., Larre C., et al.: X-ray absorption spectroscopic investigation of the Ca and Mg environments in CO2-bearing silicate glasses, Chem. Geol. 510, 2019, pp. 91–102. https://doi.org/10.1016/j.chemgeo.2019.02.014
dc.relation.isbasedonGuo X., Wu J., Yiu Y.M., et al.: Drug-nanocarrier interaction– tracking the local structure of calcium silicate upon ibuprofen loading with X-ray absorption near edge structure (XANES), Phys. Chem. Chem. Phys. 15(36), 2013, pp. 15033–15040. https://doi.org/10.1039/c3cp50699a
dc.relation.isbasedonBrinza L., Schofield P.F., Hodson M.E., et al.: Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris, J. Synchrotron Radiat. 21(Pt 1), 2014, pp. 235–241. https://doi.org/10.1107/S160057751303083X
dc.relation.isbasedonKathyola T.A., Chang S.Y., Willneff E.A., et al.: X-ray absorption spectroscopy as a process analytical technology: Reaction studies for the manufacture of sulfonate-stabilized calcium carbonate particles, Indu. Eng. Chem. Res. 62(40), 2023, pp. 16198–16206. https://doi.org/10.1021/acs.iecr.3c02540
dc.relation.isbasedonMonico L., Cartechini L., Rosi F., et al.: Synchrotron radiation Ca K-edge 2D-XANES spectroscopy for studying the stratigraphic distribution of calcium-based consolidants applied in limestones, Scientific Reports 10(1), 2020, pp. 14337. https://doi.org/10.1038/s41598-020-71105-8
dc.relation.isbasedonXto J., Wetter R., Borca C.N., et al.: Droplet-based in situ Xray absorption spectroscopy cell for studying crystallization processes at the tender X-ray energy range, RSC Adv. 9(58), 2019, pp. 34004–34010. https://doi.org/10.1039/c9ra06084g
dc.relation.isbasedonLevi-Kalisman Y., Raz S., Weiner S., et al.: X-Ray absorption spectroscopy studies on the structure of a biogenic “amorphous” calcium carbonate phase, J. Chem. Soc. Dalton Trans. (21), 2000, pp. 3977–3982. https://doi.org/10.1039/B003242P
dc.relation.isbasedonLevi-Kalisman Y., Raz S., Weiner S., et al.: Structural differences between biogenic amorphous calcium carbonate phases using X-ray absorption spectroscopy. Adv. Funct. Mater. 12(1), 2002, pp. 43. https://doi.org/10.1002/1616- 3028(20020101)12:1%3C43
dc.relation.isbasedonLam R.S.K., Charnock J.M., Lennie A., et al.: Synthesisdependant structural variations in amorphous calcium carbonate, CrystEngComm 9(12), 2007, 1226 p. https://doi.org/10.1039/b710895h
dc.relation.isbasedonFiege A., Ruprecht P., Simon A.C., et al.: Calibration of Fe XANES for high-precision determination of Fe oxidation state in glasses: Comparison of new and existing results obtained at different synchrotron radiation sources, Am. Mineral. 102(2), 2017, pp. 369-380. https://doi.org/10.2138/am-2017-5822
dc.relation.isbasedonCottrell E., Kelley K.A., Lanzirotti A., et al.: High-precision determination of iron oxidation state in silicate glasses using XANES, Chem. Geol. 268(3-4), 2009, pp. 167-179. https://doi.org/10.1016/j.chemgeo.2009.08.008
dc.relation.isbasedonWilke M., Farges F., Petit P.E., et al.: Oxidation state and coordination of Fe in minerals: An Fe K- XANES spectroscopic study, Am. Mineral. 86(5-6), 2001, pp. 714– 730. https://doi.org/10.2138/am-2001-5-612
dc.relation.isbasedonWestre T.E., Kennepohl P., DeWitt J.G., et al.: A multiplet analysis of Fe K-Edge 1s → 3d pre-edge features of iron complexes, J. Am. Chem. Soc. 119(27), 1997, pp. 6297– 6314. https://doi.org/10.1021/ja964352a
dc.relation.isbasedonBoubnov A., Lichtenberg H., Mangold S., et al.: Identification of the iron oxidation state and coordination geometry in iron oxide- and zeolite-based catalysts using pre-edge XAS analysis, J. Synchrotron Radiat. 22(2), 2015, pp. 410–426. https://doi.org/10.1107/S1600577514025880
dc.relation.ispartofFibres and Textiles
dc.subjectCompression stockingcs
dc.subject4D body scanningcs
dc.subjectLower legcs
dc.subjectBody size and shapecs
dc.subjectDynamic positioncs
dc.titleSYNCHROTRON BASED X-RAY ABSORPTION SPECTROS-COPY FOR STRUCTURAL ANALYSIS OF BASALT FIBERSen
dc.typeArticleen
local.accessopen access
local.citation.epage65
local.citation.spage56
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue2
local.relation.volume31
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2024_2_8.pdf
Size:
592.38 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections