OPTIMIZATION OF RAWHIDE COLLAGEN DEFIBRILLIZATION PROCESS

dc.contributor.authorDanylkovych, Anatolii
dc.contributor.authorLishchuk, Viktor
dc.contributor.authorSanginova, Olga
dc.contributor.authorShakhnovsky, Arcady
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2023-08-24T08:33:45Z
dc.date.available2023-08-24T08:33:45Z
dc.description.abstractThe paper features the rawhide collagen defibrillization process in the elastic leather materials manufacturing. Optimal colloid-chemical properties of semi-processed products were defined by way of using mathematical optimization of rowhide liming process. It was found that during the alkaline treatment of raw material (in the operating temperature range) the degree of defibrillation of raw material raises (in proportion to the derm collagen swelling) with increase in the ratio of process solution to the mass of raw material, and the extremum of hydrothermal stability and leather yield can be estimated. It was also shown that the degree of swelling decreases with a decreasing ratio of sodium sulphide and sodium hydrosulphide, and the leather area yield reaches the maximum value at the equal proportion of these reagents. Multicriteria optimization of rawhide liming process using the Harrington’s desirability function was carried out. The developed technology of soaking and liming was tested under production conditions. The above-mentioned low-waste technology provides elastic leather materials with a yield increase by 3.5%, which meet the industry standards requirements.cs
dc.formattext
dc.format.extent10 stran
dc.identifier.doi10.15240/tul/008/2023-3-001
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/172674
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonSkyba M., Synyuk O., Zlotenko B., et al.: A new modern theoretical view of the structural model of the structure of natural leather, Fibres and Textiles 28(2), 2021, pp. 82-90.
dc.relation.isbasedonAndreyeva O., Atamanova A., Maievska T., et al.: Utilization of enzyme-containing products obtained from fish waste in leather production processes, Fibres and Textiles 28(4), 2021, pp. 3-10.
dc.relation.isbasedonOrgel J. P. R. O., Irving T. C., Miller A., Wess T. J.: Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences 103(24), 2006. pp. 9001–9005. https://doi.org/10.1073/pnas.0502718103
dc.relation.isbasedonBerber D., Birbir M.: Determination of major problems of raw hide and soaking process in leather industry, International Journal of Advances in Engineering and Pure Sciences 2, 2019. pp. 118–125. https://doi.org/10.7240/jeps.470865
dc.relation.isbasedonThanikaivelan P., Rao J.R., Nair B.U., et al.: Recent trends in leather making: processes, problems, and pathways, Critical Reviews in Environmental Science and Technology 35(1), 2005. pp. 37–79.
dc.relation.isbasedonSiggel L., Bulo R. et. al.: Leather related collagen modeling: the challenges of modeling hierarchical structures. Journal of the American Leather Chemists Association. 102, 2007. pp. 333-336.
dc.relation.isbasedonSteshov G.I., Golovteyeva A.A.: Influence of the type of salt on the change in the properties of collagen during alkaline salt treatment (Vliyaniye vida soli na izmeneniye svoystv collagena pri shcholochno-solevoy obrabotke), Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya logkoy promyshlennosti 2, 1965. pp. 75–79. (In Russian).
dc.relation.isbasedonO’Flaerti F., Roddi V.T., Loller R.M.: Chemistry and technology of leather. Vol. 1. Literary Licensing, LLC, 2013.
dc.relation.isbasedonOliynyk M.M., Ponomariov S.H., Zhuravskyy V.A.: Influence of concentration of lime on properties of clay, semi-finished product and finished skin (Vplyv kontsentratsiyi vapna na vlastyvosti holyny, napivfabrykatu y hotovoyi shkiry), Lehka promyslovist 1, 1980. Pp. 50–52. (in Ukrainian).
dc.relation.isbasedonLevenko P.I., Volpert G.R.: Influence of some factors on dehairing and consumption of raw materials (Vliyaniye nekotorykh faktorov na obezvolashivaniye i raskhod syr'ya), Leather and footwear industry 10, 1997. pp. 17–20. (in Russian).
dc.relation.isbasedonReich G.: Collagen report: A Review about the present state. Das Leder 46, 1995. pр. 192–199.
dc.relation.isbasedonGumbiner B.M.: Cell adhesion: the molecular basis of tissue architecture and morphogenesis, Cell 84 (3), 1996. pp. 345– 357. https://doi.org/10.1016/S0092-8674(00)81279-9
dc.relation.isbasedonSaran S., Mahajan R.V., Kaushik R., et al.: Enzyme mediated beam house operations of leather industry: a needed step towards greener technology, Journal of Cleaner Production, 54, 2013. pp. 315–322. https://doi.org/10.1016/j.jclepro.2013.04.017
dc.relation.isbasedonJayanthi D., Victor J.S., Chellan R., Chellappa M.: Green processing: minimising harmful substances in leather making, Environmental Science and Pollution Research 26, 2019. pp. 6782–6790. https://doi.org/10.1007/s11356-018-04111-z
dc.relation.isbasedonSizeland K.H., Edmonds R.L., Basil-Jones M.M., et.al.: Changes to collagen structure during leather processing, Journal of Agricultural and Food Chemistry, 63, 2015. pp. 2499−2505. https://doi.org/10.1021/jf506357j
dc.relation.isbasedonKayed H.R., Sizeland K.H., Kirby N., et. al.: Collagen cross linking and fibril alignment in pericardium, RSC Advances 5, 2015. pp. 3611−3618. https://doi.org/10.1039/C4RA10658J
dc.relation.isbasedonMaxwell C.A., Wess T.J., Kennedy C.J.: X-ray diffraction study into the effects of liming on the structure of collagen, Biomacromolecules 7, 2006. pp. 2321−2326. https://doi.org/10.1021/bm060250t
dc.relation.isbasedonDanylkovych A.H.: Practical training on chemistry and technology of leather and fur (Praktychnekerivnyctvo z himiji I tekhnologii shkiry i khutra): 2nd ed. Kyiv: Phoenix, 2006. (in Ukrainian).
dc.relation.isbasedonDanylkovych A., Mokrousova O., Zhyhotsky A.: Improvement of the filling-plasticizing processes of forming multifunctional leather materials. Eastern-European Journal of Enterprise Technologies 2/6 (80) 2016, pp. 23–31 https://doi.org/10.15587/1729-4061.2016.65488
dc.relation.isbasedonDanylkovych A.H.: Basic materials and technologies of leather production (Osnovni materialy i tekhnolohiyi vyrobnytstva shkiry). Kyiv: KNUTD, 2016. (in Ukrainian).
dc.relation.isbasedonTechnological methods of production of leathers of various assortment for shoe uppers and shoe linings, haberdashery from cattle hides and horse hides (Tekhnolohichna metodyka vyrobnytstva shkir riznomanitnoho asortymentu dlya verkhu vzuttya i pidkladky vzuttya, halantereynykh vyrobiv iz shkur velykoyi rohatoyi khudoby ta kinsʹkykh shkir). Kyiv: Chinbar, 2003. (in Ukrainian).
dc.relation.isbasedonBox G.E.P., Draper N.R.: The choice of a second order rotatable design, Biometrika 50, 3−4, 1963. pp. 335–352. https://doi.org/10.1093/biomet/50.3-4.335
dc.relation.isbasedonHong C., Chen S.: Optimisation of multi-response surface parameters of the roving twist factor and spinning back zone draft, Fibres & textiles in Eastern Europe 27, 5(137), 2019. pp. 28−33. https://doi.org/10.5604/01.3001.0013.2898
dc.relation.isbasedonAndonova S., Baeva S.: Optimizing a function linking an quality criterion to input factors on the thermo-mechanical fusing process, Fibres and Textiles 3, 2020. pp. 19-24.
dc.relation.isbasedonDanylkovych A. G., Shakhnovsky A.M.: Development of a filling-hydrophobic composition in the production of velour from nutria skins: experience of multi-goal optimization (Rozroblennya napovnyuvalʹno-hidrofobizuyuchoyi kompozytsiyi u vyrobnytstvi velyuru zi shkurok nutriyi: dosvid bahatoparametrychnoyi optymizatsiyi), Kompjuterne modelyuvannya v khimiyi ta tekhnolohiyakh i systemakh staloho rozvytku: Zbirnyk naukovykh statey, Kyiv: Igor Sikorski KPI, 2020. pp. 161-168.
dc.relation.isbasedonOliveira L., Saramago S.: Multiobjective optimization techniques applied to engineering problems, Journal of the Brazilian Society of Mechanical Sciences and Engineering 32, 2010. pp. 94−105. https://doi.org/10.1590/S1678-58782010000100012
dc.relation.isbasedonCosta N.R., Lourenço J., Pereira Z.L.: Desirability function approach: A review and performance evaluation in adverse conditions, Chemometrics and Intelligent Laboratory Systems 107, 2, 2011. pp. 234–244. https://doi.org/10.1016/j.chemolab.2011.04.004
dc.relation.isbasedonDanylkovych А.H., Korotych O.I.: Optimization of leather filling composition containing SiO2 nanoparticles, Journal of the American Leather Chemists Association 114, 2019. pp. 333–343.
dc.relation.isbasedonDanylkovych A., Lishchuk V., Shakhnovsky A.: Improvement of structure determining qualitative characteristics of hydrophobized velour, Fibres and Textiles 3, 27, 2020. pp. 41−48.
dc.relation.isbasedonSivertsen E., Bjerke F., Almøy T., et al.: Multivariate optimization by visual inspection, Chemometrics and Intelligent Laboratory Systems 85, 2007. pp. 110−118.
dc.relation.isbasedonPasandideh S.H.R., Niaki S.T.A.: Multi-response simulation optimization using genetic algorithm within desirability function framework. Applied Mathematics and Computation, 175(1), 2006. pp. 366–382. https://doi.org/10.1016/j.amc.2005.07.023
dc.relation.isbasedonMichalewicz Z.: A personal perspective on evolutionary computation A 35-year journey. Evolutionary Computation 2023. pp. 1-33. https://doi.org/10.1162/evco_a_00323
dc.relation.ispartofFibres and Textiles
dc.subjectDefibrillizationcs
dc.subjectDerm collagencs
dc.subjectRawhidecs
dc.subjectLimingcs
dc.subjectSwellingcs
dc.subjectMulticriteria optimizationcs
dc.subjectDesirability functioncs
dc.titleOPTIMIZATION OF RAWHIDE COLLAGEN DEFIBRILLIZATION PROCESSen
dc.typeArticleen
local.accessopen access
local.citation.epage12
local.citation.spage3
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue3
local.relation.volume30
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2023_3_1.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections