VIRUSES AND THEIR PENETRATION THROUGH FIBROUS STRUCTURES: A REVIEW

dc.contributor.authorMILITKÝ, JIŘÍ
dc.contributor.authorWIENER, JAKUB
dc.contributor.authorKŘEMENÁKOVÁ, DANA
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2023-11-02T09:11:45Z
dc.date.available2023-11-02T09:11:45Z
dc.description.abstractIn the first part of this review the necessary information about structure and chemical composition of viruses are briefly discussed on the basic level. Main types of interaction of viruses with human cells are briefly described. The basic method of suppressing the spread of viruses from the surroundings of a healthy person and into the surroundings of an infected person is the use of protective equipment, especially face masks and respirators, where the active element is a fibrous structure. The protective functions of these structures depend on their composition (usually hydrophobic materials), construction (fabrics, knitted fabrics, nonwoven fabrics, nano-meshes), morphology (porosity, thickness, pore distribution), the form of virus propagation (usually in water droplets as a type of aerosol), interaction conditions with the surface of the protective layer (speed of impact, conditions of capture on the surface of the fibrous phase, speed of penetration) and the method of virus inactivation (usually contact or very short-range interaction). It is therefore a very complicated problem that is often solved using a combination of mathematical modeling and simulation. The purpose is to present some methods of solving problems related to the protective function of fiber structures, which allow the specification of the suitability of these structures for real use.cs
dc.formattext
dc.format.extent13 stran
dc.identifier.doi10.15240/tul/008/2023-4-003
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/173215
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonMilitký J., Prince A., Venkataraman M. (eds): Textiles and Their Use in Microbial Protection. Focus on COVID-19 and other viruses, London: CRC Press Boca Raton, 2021.
dc.relation.isbasedonMilitký J., Novák O., Křemenáková D., et al.: A Review of impact of textile research on protective face masks, Materials, 14, 2021, 1937. https://doi.org/10.3390/ma14081937
dc.relation.isbasedonGericke, A., Venkataraman, M., Militky, J.; et al.: Unmasking the mask: Investigating the role of physical properties in the efficacy of fabric masks to prevent the spread of the COVID19 Virus, Materials 14(24), 2021, 7756. https://doi.org/10.3390/ma14247756
dc.relation.isbasedonGericke, A., Militký, J., Venkataraman, M., et al.: The effect of mask style and fabric selection on the comfort properties of fabric masks, Materials 15(7), 2022, 2559. https://doi.org/10.3390/ma15072559
dc.relation.isbasedonChua, M.H., et al.: Face Masks in the new COVID-19 normal: materials, testing, and perspectives. AAS Research, 2020, 7286735. https://doi.org/10.34133/2020/7286735
dc.relation.isbasedonDobiáš J.: Determination of substances in exhaled air condensate, Diploma Thesis, Hradec Králové: UK Hradec Králové, 2006.
dc.relation.isbasedonDa Costa J.P., et al.: (Nano) plastics in the environment – sources, fates and effects, Sci Total Environ, 566–567, 2016, pp. 15–26. https://doi.org/10.1016/j.scitotenv.2016.05.041
dc.relation.isbasedonDa Costa J.P.: Micro- and nanoplastics in the environment: Research and Policymaking, Current Opinion in Environmental Science & Health, 1, 2018, pp. 12–16. https://doi.org/10.1016/j.coesh.2017.11.002
dc.relation.isbasedonBeaurepaire M., et al.: Microplastics in the atmospheric compartment, Current Opinion in Food Science, 41,2021, pp. 159–168. https://doi.org/10.1016/j.cofs.2021.04.010
dc.relation.isbasedonGasperi J,. et al.: Microplastics in air: Are we breathing it in?, Current Opinion in Environmental Science & Health, 1, 2018, pp. 1–5. https://doi.org/10.1016/j.coesh.2017.10.002
dc.relation.isbasedonLindsley W.G, a kol.: Measurements of airborne influenza virus in aerosol particles from human coughs, PLoS One, 5, 2010, e15100. https://doi.org/10.1371/journal.pone.0015100
dc.relation.isbasedonZhu S.W., et al.: Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Build Environ., 41(12), 2006, pp. 1691-1702. https://doi.org/10.1016/j.buildenv.2005.06.024
dc.relation.isbasedonGupta J.K., et al.: Flow dynamics and characterization of a cough, Indoor Air., 19, 2009, pp. 517-525. https://doi.org/10.1111/j.1600-0668.2009.00619.x
dc.relation.isbasedonVillafruela J.M., et al.: Influence of human breathing modes on airborne cross infection risk, Build. Environ., 106, 2016, pp. 340-351. https://doi.org/10.1016/j.buildenv.2016.07.005
dc.relation.isbasedonLiu L., et al.: Short-range airborne transmission of expiratory droplets between two people, Indoor Air., 27(2), 2016, pp. 452-462. https://doi.org/10.1111/ina.12314
dc.relation.isbasedonRiley E.C., et al.: Airborne spread of measles in a suburban elementary school, Am. J. Epidemiol, 107, 1978, pp. 421- 432. https://doi.org/10.1093/oxfordjournals.aje.a112560
dc.relation.isbasedonCermak R., Melikov A.K.: Protection of occupants from exhaled infectious agents and floor material emissions in rooms with personalized and underfloor ventilation. HVAC&R Res., 13(1), 2007, pp. 23-38.
dc.relation.isbasedonAi Z. T., Melikov A.K.: Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review, Indoor Air, 28(4), 2018, pp. 500 – 524. https://doi.org/10.1111/ina.12465 19
dc.relation.isbasedonLee S., Obenorf K.: Use electrospun nanofiber web for protective textile materials as barriers to liquid penetration, Textile Research Journal, 77(9), 2007, pp. 696–702. https://doi.org/10.1177/0040517507080284
dc.relation.isbasedonHui L., et al.: Transparent antibacterial nanofiber air filters with highly efficient moisture resistance for sustainable particulate matter capture, iScience 19, 2019, pp. 214–223. https://doi.org/10.1016/j.isci.2019.07.020
dc.relation.isbasedonLee K.W., Liu B.Y.H.: Theoretical Study of Aerosol Filtration by Fibrous Filters, Aerosol Sci. Technol., 1(2), 1982, pp. 147–161. https://doi.org/10.1080/02786828208958584
dc.relation.isbasedonHosseini S.: Droplet impact and penetration on to the structured pore network geometries, PhD Thesis, Toronto: University of Toronto, 2015.
dc.relation.isbasedonOk H.: Particle-laden drop impingement on a solid surface, PhD Thesis, Atlanta: Georgia Institute of Technology, 2005.
dc.relation.isbasedonHo S.T., Hutmacher D.W.: A comparison of micro CT with other techniques used in the characterization of scaffolds, Biomaterials 27(8), 2006, pp. 1362–1376. https://doi.org/10.1016/j.biomaterials.2005.08.035
dc.relation.isbasedonBagherzadeh R., et al.: Three-dimensional pore structure analysis of nanomicrofibrous scaffolds using confocal laser scanning microscopy, J Biomed Mater Res Part A, 101A, 2013, pp. 765–774. https://doi.org/10.1002/jbm.a.34379
dc.relation.isbasedonBagherzadeh R., et al.: A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials, J Biomed Mater Res Part A, 101A, 2013, pp. 2107– 2117. https://doi.org/10.1002/jbm.a.34487
dc.relation.isbasedonSampson W.W.: A multiplanar model for the pore radius distribution in isotropic near-planar stochastic fibre networks, J Mater Sci, 38, 2003, pp. 1617–1622. https://doi.org/10.1023/A:1023298820390
dc.relation.isbasedonEichhorn J., Sampson W.W.: Statistical geometry of pores and statistics of porous nanofibrous assemblies, J. R. Soc. Interface, 2(4), 2005, pp. 309-318. https://doi.org/10.1098/rsif.2005.0039
dc.relation.isbasedonBorhani S., et al.: Structural characteristics and selected properties of polyacrylonitrile nanofiber mats, Journal of Applied Polymer Science, 108, 2008, pp. 2994–3000. https://doi.org/10.1002/app.27904
dc.relation.isbasedonMilitký J., et al.: Penetration of mites through textile layer, In proceedings of: Int conf. Medical textiles 96. Bolton, 1996,
dc.relation.isbasedonhttps://en.wikipedia.org/wiki/Severe_acute_respiratory_syn drome_coronavirus_2 32.
dc.relation.isbasedonWu Z. et al.: Amino acid influence on copper binding to peptides, J Am Soc Mass Spectrom., 21(4), 2010, pp. 522– 533. https://doi.org/10.1016/j.jasms.2009.12.020
dc.relation.isbasedonVan Doremalen N., Bushmaker T., Morris D.H.: Aerosol and surface stability of HCoV-19 (SARS-CoV-1 2) compared to SARS-CoV-1, MedRxiv, 2020. https://doi.org/10.1101/2020.03.09.20033217
dc.relation.isbasedonTinoco, I. et al.: How RNA folds, Journal of Molecular Biology, 293, 1999, pp. 271–81.
dc.relation.isbasedonRadke K., et al.: Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell, Cellular Microbiology, 8(3), 2006, pp. 387–400. https://doi.org/10.1111/j.1462-5822.2005.00679.x
dc.relation.isbasedonPeng Q.-Y., Venkataraman M., Yang K., at al.: Kinetic model for disinfection with photo-oxidation. In: Text. Bioeng. Informatics Symp. Proc. 2020 - 13th Text. Bioeng. Informatics Symp. TBIS 2020, pp. 68-75, 2020
dc.relation.isbasedonFaheem S., Militky J., Wiener, J.: Characterization, indication and passivation of SARS-CoV-2, In: Text. Bioeng. Informatics Symp. Proc. 2020 - 13th Text. Bioeng. Informatics Symp. TBIS 2020, pp. 76-83, 2020.
dc.relation.isbasedonMahmood A., Militky J., Pechočiaková M., et al.: Eradicating spread of virus by photo-catalysis process, In: Text. Bioeng. Informatics Symp. Proc. 2020 - 13th Text. Bioeng. Informatics Symp. TBIS 2020, pp. 22-31, 2020.
dc.relation.isbasedonWang D., Hu S., Kremenakova D. et al.: Virology of SARSCoV-2, In: Text. Bioeng. Informatics Symp. Proc. 2020 - 13th Text. Bioeng. Informatics Symp. TBIS 2020, pp. 49-55, 2020.
dc.relation.isbasedonHu S., Wang D., Yang K, et al.: Copper coated textiles for inhibition of virus spread. In: Text. Bioeng. Informatics Symp. Proc. 2020 - 13th Text. Bioeng. Informatics Symp. TBIS 2020, pp. 84-91, 2020
dc.relation.isbasedonTan X.-D., Peng Q.-Y., Yang K., et al.: Influence of UV light and ozonization on microbes, In: Text. Bioeng. Informatics Symp. Proc. 2020 - 13th Text. Bioeng. Informatics Symp. TBIS 2020, pp. 159-166, 2020.
dc.relation.isbasedonKhan M.Z., Militky J., Wiener J.: Enhanced disinfection of titanium dioxide, In: Text. Bioeng. Informatics Symp. Proc. 2020 - 13th Text. Bioeng. Informatics Symp. TBIS 2020, pp. 188-196, 2020.
dc.relation.isbasedonKarthik D., Militky J., Venkataraman M.: Eradicating spread of virus by using activated carbon, In: Text. Bioeng. Informatics Symp. Proc. 2020 - 13th Text. Bioeng. Informatics Symp. TBIS 2020, pp.56-63, 2020
dc.relation.isbasedonAli A., Militky J., Shahid M.: Copper based viral inhibition, In: Text. Bioeng. Informatics Symp. Proc. 2020 - 13th Text. Bioeng. Informatics Symp. TBIS 2020, pp.32-36, 2020.
dc.relation.ispartofFibres and Textiles
dc.subjectSARS 2 virus structurecs
dc.subjectViral attackcs
dc.subjectFiltration of dropletscs
dc.subjectSpreading on porous structurescs
dc.subjectProtective layerscs
dc.subjectDistribution of pore radiics
dc.titleVIRUSES AND THEIR PENETRATION THROUGH FIBROUS STRUCTURES: A REVIEWen
dc.typeArticleen
local.accessopen access
local.citation.epage34
local.citation.spage22
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue4
local.relation.volume30
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2023_4_3.pdf
Size:
2.43 MB
Format:
Adobe Portable Document Format
Description:
článek
Collections