WOUND DRESSING WITH TEXTILE DRESSING APPROACH: A REVIEW

dc.contributor.authorShahidi, Sheila
dc.contributor.authorMoazzenhi, Bahareh
dc.contributor.authorKalahroodi, Hosseini Kimiasadat
dc.contributor.authorMongkholrattanasit, Rattanaphol
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2024-08-05T08:28:24Z
dc.date.available2024-08-05T08:28:24Z
dc.description.abstractTo help healing, protect and care the wound from additional damage, a sterile dressing is applied to wound and injured area. Wound dressing can be a sterile pad or compress that directly contact with the wound area. Nowadays, different models of wound dressings are used in the medical field. In this review paper different wound dressings and efforts made on the textile based wound dressings discussed.cs
dc.formattext
dc.format.extent13 stran
dc.identifier.doi10.15240/tul/008/2024-1-002
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/175244
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonKubera S.K.S., Prakash C., Subramanian S.: Study on performance of different wound dressings on surgical non infected wounds, Journal of Natural Fibers 18(2), 2021, pp. 161-174. http://doi.org/10.1080/15440478.2019.1612812
dc.relation.isbasedonTavakoli S., Klar A.S.: Advanced hydrogels as wound dressings, Biomolecules 10(8), 2020, pp. 1-20. http://doi:10.3390/biom10081169
dc.relation.isbasedonAndrews K.L., Derby K.M., Jacobson T.M., et al.: Prevention and management of chronic wounds. In: Cifu D.X., editor. Braddom's physical medicine and rehabilitation, Pennsylvania: Elsevier, 2021, pp. 469-484. http://doi:10.1016/B978-0-323-62539-5.00024-2
dc.relation.isbasedonRamazan E.: Advances in fabric structures for wound care. In: Rajendran S., editor. Advanced textiles for wound care, Cambridge: Woodhead Publishing, 2019, pp. 509 – 540. http://doi:10.1016/B978-0-08-102192-7.00018-7
dc.relation.isbasedonVachhrajani V., Khakhkhar P.: Science of wound healing and dressing materials, Springer Nature Singapore, Gateway East, 2020. http://doi:10.1007/978-981-32-9236-9_7
dc.relation.isbasedonVoncina B., Fras L.Z., Ristic T.: Active textile dressings for wound healing. In: Langenhove L.V., editor. Advances in smart medical textiles: Treatments and health monitoring, Cambridge: Woodhead Publishing, 2016, pp. 73-92. http://doi:10.1016/B978-1-78242-379-9.00004-9
dc.relation.isbasedonCutting K.F., White R.J., Legerstee R.: Evidence and practical wound care–an all-inclusive approach, Wound Medicine 16, 2017, pp. 40-45. http://doi:10.1016/j.wndm.2017.01.005
dc.relation.isbasedonMilne K.E., Penn-Barwell J.G.: Classification and management of acute wounds and open fractures, Surgery (Oxford) 38(3), 2020, pp.143- 149. http://doi:10.1016/j.mpsur.2020.01.010
dc.relation.isbasedonSen C.K.: Human wounds and its burden: an updated compendium of estimates, Advances in wound care 8, 2019, pp. 39-48. http://doi:10.1089/wound.2019.0946
dc.relation.isbasedonGuest J.F., Fuller G.W., Vowden P.: Cohort study evaluating the burden of wounds to the UK’s National Health Service in 2017/2018, update from 2012/2013, BMJ Open 10(12), 2020, pp. 1-15. http://doi:10.1136/bmjopen-2020-045253
dc.relation.isbasedonTottoli E.M., Dorati R., Genta I., et al.: Skin wound healing process and new emerging technologies for skin wound care and regeneration, Pharmaceutics 12(8), 2020, pp. 1-30. http://doi:10.3390/pharmaceutics12080735
dc.relation.isbasedonRizani N.: Modern wound dressing for wound infection: An overview, Indonesian Journal of Tropical and Infectious Disease 3(1), 2012, pp. 39-59. http://doi:10.20473/ijtid.v3i1.201
dc.relation.isbasedonKuo F.C., Hsu C.W., Tan T.L., et al.: Effectiveness of different wound dressings in the reduction of blisters and periprosthetic joint infection following total joint arthroplasty: A systematic review and network meta-analysis, The Journal of Arthroplasty 36(7), 2021, pp. 2612- 2629. https://doi:10.1016/j.arth.2021.02.047
dc.relation.isbasedonKumar K.S., Prakash C., Ramesh P., et al.: Study of wound dressing material coated with natural extracts of Calotropis Gigantean, Eucalyptus Globulus and buds of Syzygium Aromaticum solution enhanced with rhEGF (REGEN-DTM 60), Journal of Natural Fibers 18(12), 2021, pp. 2270-2283. http://doi.org/10.1080/15440478.2020.1726239
dc.relation.isbasedonPrakash C., Sukumar N., Ramesh P., et al.: Development and characterization of wound dressing material coated with natural extracts of curcumin, aloe vera and chitosan solution enhanced with rhEGF (REGEN-DTM), Journal of Natural Fibers 18(12), 2021, pp. 2019-2032. http://doi.org/10.1080/15440478.2019.1710738
dc.relation.isbasedonShi C., Wang C., Liu H., et al.: Selection of appropriate wound dressing for various wounds, Frontiers in Bioengineering and Biotechnology 8, 2020, pp. 1-17. http://doi:10.3389/fbioe.2020.00182
dc.relation.isbasedonVivcharenko V., Przekora A.: Modifications of wound dressings with bioactive agents to achieve improved prohealing properties, Applied Sciences 11(9), 2021, pp.1-16. http://doi:10.3390/app11094114
dc.relation.isbasedonThomas S.: Hydrocolloid dressings in the management of acute wounds: a review of the literature, International Wound Journal 5(5), 2008, pp. 602-613. http://doi:10.1111/j.1742-481X.2008.00541.x
dc.relation.isbasedonCLH Healthcare, 7 Types of Wound Dressings & When to Use Each. https://clhgroup.co.uk/learning-centre/guides/7-types-ofwound-dressings-when-to-use-each
dc.relation.isbasedonThomas S.: Hydrocolloid dressings in the management of acute wounds: a review of the literature, International wound journal 5(5), 2008, pp. 602-613. https://doi.org/10.1111/j.1742-481X.2008.00541.x
dc.relation.isbasedonKamińska M.S., Cybulska A.M., Skonieczna-Żydecka K., Augustyniuk K., Grochans E., Karakiewicz B.: Effectiveness of hydrocolloid dressings for treating pressure ulcers in adult patients: A systematic review and meta-analysis, International Journal of Environmental Research and Public Health 17(21), 2020, pp. 1-19. http://doi:10.3390/ijerph17217881
dc.relation.isbasedonNguyen H.M., Le T.T.N., Nguyen A.T., et al.: Biomedical materials for wound dressing: Recent advances and applications, RSC advances 13(8), 2023, pp. 5509-5528. https://doi.org/10.1039/D2RA07673J
dc.relation.isbasedonAhmad N.: In vitro and in vivo characterization methods for evaluation of modern wound dressings, Pharmaceutics 15(1), 2022, pp. 1-47. https://doi.org/10.3390/pharmaceutics15010042
dc.relation.isbasedonLong C., Qing Y., Li S., et al.: Asymmetric composite wound nanodressing with superhydrophilic/ superhydrophobic alternate pattern for reducing blood loss and adhesion, Composites Part B: Engineering 223, 2021, pp. 1-10. http://doi:10.1016/j.compositesb.2021.109134
dc.relation.isbasedonJin S., Newton M.A.A., Cheng H., et al.: Progress of hydrogel dressings with wound monitoring and treatment functions, Gels 9(9), 2023, pp. 1-26. https://doi.org/10.3390/gels9090694
dc.relation.isbasedonAsdasd Weller C., Team V.: Interactive dressings and their role in moist wound management. In Rajendran R., editor. Advanced textiles for wound care Cambridge: Woodhead Publishing, 2019, pp. 105-134. https://doi.org/10.1016/B978-0-08-102192-7.09001-9
dc.relation.isbasedonLu H., Yuan L., Yu X.,et al.: Recent advances of on-demand dissolution of hydrogel dressings, Burns & Trauma 6, 2018, pp.1-13. http://doi:10.11846/s1038-018-0138-8
dc.relation.isbasedonEl-Sherbiny I.M., Yacoub M.H.: Hydrogel scaffolds for tissue engineering: Progress and challenges, Global Cardiology Science and Practice 2013(3), pp. 1-27. https://doi.org/10.5339/gcsp.2013.38
dc.relation.isbasedonGuo B., Qu J., Zhao X., et al.: Degradable conductive selfhealing hydrogels based on dextran-graft-tetraaniline and Ncarboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration, Acta Biomaterialia 84, 2019, pp. 180-193. http://doi:10.1016/j.actbio.2018.12.008
dc.relation.isbasedonNielsen J., Fogh K.: Clinical utility of foam dressings in wound management: A review, Chronic Wound Care Management and Research 2, 2015, pp. 31-38.
dc.relation.isbasedonBullough L., Johnson S., Forder R.: Evaluation of a foam dressing for acute and chronic wound exudate management, British Journal of Community Nursing 20 (Sup9), 2015, pp. S17-S24. http://doi:10.12968/bjcn.2015.20.Sup9.S17
dc.relation.isbasedonKowalczuk D., Miazga-Karska M., Gładysz A., et al.: Characterization of ciprofloxacin-bismuth-loaded antibacterial wound dressing, Molecules, 25(21), 2020, pp. 1-13. http://doi:10.3390/molecules25215096
dc.relation.isbasedonWang Y.C., Lee H.C., Chen C.L., et al.: The effects of silverreleasing foam dressings on diabetic foot ulcer healing, Journal of Clinical Medicine 10(7), 2021, pp. 1-9. http://doi:10.3390/jcm10071495
dc.relation.isbasedonPramod S.: A soft silicone foam dressing that aids healing and comfort in oncology care, British Journal of Nursing 30(1), 2021, pp. 40-46. http://doi:10.12968/bjon.2021.30.1.40
dc.relation.isbasedonWille J.C., Alblas A.B.V.O., Thewessen E.A.P.M.: A comparison of two transparent film-type dressings in central venous therapy, Journal of Hospital Infection 23(2), 1993, pp.113-121. http://doi:10.1016/0195-6701(93)90015-R
dc.relation.isbasedonSilveira R.C.D.C.P., Braga F.T.M.M., Garbin L.M., et al.: The use of polyurethane transparent film in indwelling central venous catheter, Revista Latino-Americana de Enfermagem 18, 2010, pp.1212-1220.
dc.relation.isbasedonGallieni M.: Transparen film dressings for intravascular catheter exit-site, The Journal of Vascular Access 5(2), 2004, pp. 69-75. http://doi:10.1177/112972980400500205
dc.relation.isbasedonAtay S., Kurt F.Y.: Effectiveness of transparent film dressing for peripheral intravenous catheter, The Journal of Vascular Access 22(1), 2021, pp.135-140. http://doi:10.1177/1129729820927238
dc.relation.isbasedonSharma S.K., Thakur K., Mudgal S.K., et al.: Efficacy of transparent vs. pressure pressing in prevention of postcardiac catheterization pain, discomfort and hematoma: A systematic review and meta-analysis of RCTs, Journal of Caring Sciences 10(2), 2021, pp. 103-110. http://doi:10.34172/jcs.2021.019
dc.relation.isbasedonEdwards J.V., Yager D.R., Cohen I.K., Diegelmann R.F., Montante S., Bertoniere N., Bopp A.F.: Modified cotton gauze dressings that selectively absorb neutrophil elastase activity in solution, Wound Repair and Regeneration 9(1), 2001, pp. 50-58. http://doi:10.1046/j.1524-475x.2001.00050.x
dc.relation.isbasedonBalasubramanian E., Balasubramanian V., Babu G., et al.: Moist wound dressing fabrications: Carboxymethylation of antibacterial cotton gauze, Journal of Engineered Fibers and Fabrics 8(4), 2013, 78-87. http://doi:10.1177/155892501300800402
dc.relation.isbasedonSoares H.P.L., Brandão E.D.S., Tonole R.: Primary bandages for people with pemphigus vulgaris lesions: An integrative literature review, Revista Gaúcha de Enfermagem 41, 2020, pp. 1-8. http://doi:10.1590/1983-1447.2020.20190259
dc.relation.isbasedonEdwards H., Finlayson K., Parker C., et al.: Wound dressing guide. Brisbane: Queensland University of Technology. 2019.
dc.relation.isbasedonFang H., Li D., Xu L., et al.: A reusable ionic liquid-grafted antibacterial cotton gauze wound dressing, Journal of Materials Science, 56, 2021, pp.7598-7612. http://doi:10.1007/s10853-020-05751-8
dc.relation.isbasedonQin Y.: Antimicrobial textile dressings in managing wound infection. Rajendran S., editor. Advanced textiles for wound care, Oxford: Woodhead Publishing, 2009, pp. 179-197. http://doi:10.1533/9781845696306.1.179
dc.relation.isbasedonAtay H.Y.: Antibacterial activity of chitosan-based systems, Functional chitosan: drug delivery and biomedical applications 2019, pp. 457-489. https://doi.org/10.1007/978-981-15-0263-7_15
dc.relation.isbasedonYang M., Wang H., Li K., et al.: A new soft tissue constructed with chitosan for wound dressings-incorporating nanoparticles for medical and nursing therapeutic efficacy, Regenerative Therapy 24, 2023, pp. 103-111. https://doi.org/10.1016/j.reth.2023.06.005
dc.relation.isbasedonAbbasipour M., Mirjalili M., Khajavi R., et al.: Coated cotton gauze with Ag/ZnO/chitosan nanocomposite as a modern wound dressing, Journal of Engineered Fibers and Fabrics 9(1), 2014, pp. 124-130. http://doi:10.1177/155892501400900114
dc.relation.isbasedonAnjum S., Arora A., Alam M.S., et al.: Development of antimicrobial and scar preventive chitosan hydrogel wound dressings, International Journal of Pharmaceutics 508(1-2), 2016, pp. 92-101. http://doi:10.1016/j.ijpharm.2016.05.013
dc.relation.isbasedonGhomi E.R., Khalili S., Khorasani S.N., et al.: Wound dressings: Current advances and future directions, Journal of Applied Polymer Science 2019, 136(27), pp. 1-12. http://doi:10.1002/app.47738
dc.relation.isbasedonZhang M.X., Zhao W.Y., Fang Q.Q., et al.: Effects of chitosan-collagen dressing on wound healing in vitro and in vivo assays, Journal of Applied Biomaterials & Functional Materials 19, 2021, pp.1-10. http://doi:10.1177/2280800021989698
dc.relation.isbasedonBagher Z., Ehterami A., Safdel M.H., et al.: Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model, Journal of Drug Delivery Science and Technology 55, 2020, pp.1-34. http://doi:10.1016/j.jddst.2019.101379
dc.relation.isbasedonPurwar R., Rajput P., Srivastava C.M.: Composite wound dressing for drug release. Fibers and Polymers 15, 2014, pp.1422-1428. http://doi:10.1007/s12221-014-1422-2
dc.relation.isbasedonFang Q.Q., Wang X.F., Zhao W.Y., et al.: Development of a chitosan–vaseline gauze dressing with wound-healing properties in murine models, The American Journal of Tropical Medicine and Hygiene 102(2), 2020, pp. 468-475. http://doi:10.4269/ajtmh.19-0387
dc.relation.isbasedonPinho E., Calhelha R.C., Ferreira I.C.F.R., et al.: Cotton‐ hydrogel composite for improved wound healing: Antimicrobial activity and anti‐inflammatory evaluation— Part 2, Polymers for Advanced Technologies 30(4), 2019, pp. 863-871. http://doi:10.1002/pat.4519
dc.relation.isbasedonJiang S., Deng J., Jin Y., et al.: Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms, Bioactive Materials 2, 2023, pp. 313-323. https://doi.org/10.1016/j.bioactmat.2022.08.014
dc.relation.isbasedonLin X., Zhang H., Zhang H., et al.: Bio-printed hydrogel textiles based on fish skin decellularized extracellular matrix for wound healing, Engineering 25, 2023, pp. 120-127.
dc.relation.isbasedonFroelich A., Jakubowska E., Wojtyłko M., et al.: Alginatebased materials loaded with nanoparticles in wound healing, Pharmaceutics 15(4), 2023, pp. 1142-1181. https://doi.org/10.3390/pharmaceutics15041142
dc.relation.isbasedonStoica A.E., Chircov C., Grumezescu A.M.: Nanomaterials for wound dressings: an up-to-date overview, Molecules 25(11), 2020, pp. 1-25. http://doi:10.3390/molecules25112699
dc.relation.isbasedonIp, M.: Antimicrobial dressings. In: Farrar, D., editor. Advanced wound repair Therapies. Cambridge: Woodhead Publishing; 2011, pp. 416-449. http://doi:10.1533/9780857093301.3.416
dc.relation.isbasedonComotto M., Saghazadeh S., Bagherifard S., et al.: Breathable hydrogel dressings containing natural antioxidants for management of skin disorders, Journal of Biomaterials Applications 33(9), 2019, pp. 1265 – 1276. http://doi:10.1177/0885328218816526
dc.relation.isbasedonWalker M., Parsons D.: Hydrofiber® technology: Its role in exudate management, Wounds UK. 6(2), 2010, pp. 31- 88
dc.relation.isbasedonWalker M., Lam S., Pritchard D., et al.: Biophysical properties of a Hydrofiber® cover dressing, Wounds UK. 6(9) 2010, pp. 16-29.
dc.relation.isbasedonQin Y.: Advanced wound dressings, The Journal of The Textile Institute 92(2), 2001, pp. 127-138. http://doi:10.1080/00405000108659563
dc.relation.isbasedonBarnea Y., Weiss J., Gur E.: A review of the applications of the Hydrofiber dressing with silver (Aquacel Ag®) in wound care, Therapeutics and Clinical Risk Management 6, 2010, pp. 21- 27.
dc.relation.isbasedonRangaraj A., Harding K., Leaper D.: Role of collagen in wound management, Wounds UK. 7(2), 2011, pp. 54-63.
dc.relation.isbasedonMathew-Steiner S.S., Roy S., Sen C.K.: Collagen in wound healing, Bioengineering. 8(5), 2021, pp. 1-15. http://doi:10.3390/bioengineering8050063
dc.relation.isbasedonSanthanam R., Rameli M.A.P., Effri A.A., et al.: Bovine based collagen dressings in wound care management, Journal of Pharmaceutical Research International 32(33), 2020, pp. 48- 63. http://doi:10.9734/jpri/2020/v32i3330949
dc.relation.isbasedonDoillon C.J., Silver F.H.: Collagen-based wound dressing: Effects of hyaluronic acid and firponectin on wound healing, Biomaterials 7(1), 1986, pp. 3-8. http://doi:10.1016/0142-9612(86)90080-3
dc.relation.isbasedonAmirrah I.N., Wee M.F.M.R., Tabata Y., et al.: Antibacterialintegrated collagen wound dressing for diabetes-related foot ulcers: an evidence-based review of clinical studies, Polymers 12(9) 2020, pp. 1-17. http://doi:10.3390/polym12092168
dc.relation.isbasedonGuo W., Yang Z., Qin X., et al.: Fabrication and Characterization of the Core-Shell Structure of Poly (3- Hydroxybutyrate-4-Hydroxybutyrate) Nanofiber Scaffolds, BioMed Research International 2021, 2021, pp. 1-11. http://doi:10.1155/2021/8868431
dc.relation.isbasedonGao C., Zhang L., Wang J., et al.: Electrospun nanofibers promote wound healing: theories, techniques, and perspectives, Journal of Materials Chemistry B 9(14), 2021, pp. 3106-3130. http://doi:10.1039/D1TB00067E
dc.relation.isbasedonAbrigo M., McArthur S.L., Kingshott P.: Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects, Macromolecular Bioscience 14(6), 2014, pp. 772-792. http://doi:10.1002/mabi.201300561
dc.relation.isbasedonFatahian R., Mirjalili M., Khajavi R., et al.: Recent studies on nanofibers based wound-dressing materials: A review. Proceedigns of 7 th International Conference on Engineering & Applied Science, 2018, pp.1-12
dc.relation.isbasedonIacob A.T., Drăgan M., Ionescu O.M., et al.: An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management, Pharmaceutics 12(10), 2020, pp. 1-49. http://doi:10.3390/pharmaceutics12100983
dc.relation.isbasedonAkhmetova A, Heinz A.: Electrospinning proteins for wound healing purposes: opportunities and challenges. Pharmaceutics 13(1), 2021, pp. 1-22. http://doi:10.3390/pharmaceutics13010004
dc.relation.isbasedonCampa-Siqueiros P., Madera-Santana T.J., Ayala-Zavala J.F., et al.: Nanofibers of gelatin and polivinyl-alcoholchitosan for wound dressing application: fabrication and characterization, Polímeros 30, 2020, pp.1-11. http://doi:10.1590/0104-1428.07919
dc.relation.isbasedonAzimi B., Maleki H., Zavagna L., et al.: Bio-based electrospun fibers for w und healing, Journal of Functional Biomaterials 11(3), 2020, pp. 1-36. http://doi:10.3390/jfb11030067
dc.relation.isbasedonAlmasian A., Najafi F., Eftekhari M., et al.: Preparation of polyurethane/pluronic F127 nanofibers containing peppermint extract loaded gelatin nanoparticles for diabetic wounds healing: Characterization, in vitro, and in vivo studies, Evidence-Based Complementary and Alternative Medicine 2021, pp. 1-16. http://doi:10.1155/2021/6646702
dc.relation.isbasedonLatiyan S., Kumar T.S., Doble M., et al.: Perspectives of nanofibrous wound dressings based on glucans and galactans-A review, International Journal of Biological Macromolecules 244, 2023, pp. 1-20. https://doi.org/10.1016/j.ijbiomac.2023.125358
dc.relation.isbasedonLi Y., Xu Z., Tang L., et al.: Nanofibers fortified with synergistic defense route: A potent wound dressing against drug-resistant bacterial infections, Chemical Engineering Journal 475 (1), 2023, pp. 146492. https://doi.org/10.1016/j.cej.2023.146492
dc.relation.isbasedonZhou L., Xu P., Dong P., et al.: A self-pumping dressing with in situ modification of non-woven fabric for promoting diabetic wound healing, Chemical Engineering Journal 457, 2023, pp.141108. https://doi.org/10.1016/j.cej.2022.141108
dc.relation.isbasedonHomaeigohar S., Boccaccini A.R.: Antibacterial biohybrid nanofibers for wound dressings, Acta Biomaterialia 107, 2020, pp. 25-49. http://doi:10.1016/j.actbio.2020.02.022
dc.relation.isbasedonLi L., Chen D., Chen J., et al.: Gelatin and catechol-modified quaternary chitosan cotton dressings with rapid hemostasis and high-efficiency antimicrobial capacity to manage severe bleeding wounds, Materials & Design 229, 2023, pp. 1-18. https://doi.org/10.1016/j.matdes.2023.111927
dc.relation.isbasedonZhang H., Wan H., Hu X., et al.: Antimicrobial-free knitted fabric as wound dressing and the mechanism of promoting infected wound healing, Science China Technological Sciences 66, 2023, pp. 2147–2154. https://doi.org/10.1007/s11431-022-2260-x
dc.relation.isbasedonParham S., Kharazi A.Z.: Cellulosic textile/clove nanocomposite as an antimicrobial wound dressing: In vitro and in vivo study, Colloids and Surfaces B: Biointerfaces 217, 2022, pp. 1-9. https://doi.org/10.1016/j.colsurfb.2022.112659
dc.relation.isbasedonAubert-Viard F., Mogrovejo-Valdivia A., Tabary N., et al.: Evaluation of antibacterial textile covered by layer-by-layer coating and loaded with chlorhexidine for wound dressing application, Materials Science and Engineering: C 100, 2019, pp. 554-563. https://doi.org/10.1016/j.msec.2019.03.044
dc.relation.isbasedonWang L., Li D., Shen Y., et al.: Preparation of Centella asiatica loaded gelatin/chitosan/nonwoven fabric composite hydrogel wound dressing with antibacterial property, International Journal of Biological Macromolecules 192, 2021, pp. 350-359. https://doi.org/10.1016/j.ijbiomac.2021.09.145
dc.relation.isbasedonGianino E., Miller C., Gilmore J.: Smart wound dressings for diabetic chronic wounds, Bioengineering 5(3), 2018, pp. 1- 26. http://doi:10.3390/bioengineering5030051
dc.relation.isbasedonWilliams S., Okolie C.L., Deshmukh J., et al.: Magnetizing cellulose fibers with CoFe2O4 nanoparticles for smart wound dressing for healing monitoring capability, ACS Applied Bio Materials 2(12), 2019, pp. 5653-5662. http://doi:10.1021/acsabm.9b00731
dc.relation.isbasedonGhaderi R., Afshar M.: Topical application of honey for treatment of skin wound in mice, Iranian Journal of Medical Sciences 29(4), 2015, pp. 185-188.
dc.relation.isbasedonNazeri S., Ardakani E.M., Babavalian H., et al.: Evaluation of effectiveness of honey-based alginate hydrogel on wound healing in rat model, Journal of Applied Biotechnology Reports 2(3), 2015, pp. 293-297.
dc.relation.isbasedonKonop M., Damps T., Misicka A., et al.: Certain aspects of silver and silver nanoparticles in wound care: a minireview, Journal of Nanomaterials 2016, pp.1-10. http://doi:10.1155/2016/7614753
dc.relation.isbasedonElSaboni Y., Hunt J.A., Stanley J., et al.: Development of a textile based protein sensor for monitoring the healing progress of a wound, Scientific Reports 12, 2022, pp. 1-12. https://doi.org/10.1038/s41598-022-11982-3
dc.relation.ispartofFibres and Textiles
dc.subjectWoundcs
dc.subjectDressingcs
dc.subjectHealingcs
dc.subjectTextilecs
dc.subjectAntibacterialcs
dc.subjectNanofiberscs
dc.titleWOUND DRESSING WITH TEXTILE DRESSING APPROACH: A REVIEWen
dc.typeArticleen
local.accessopen access
local.citation.epage25
local.citation.spage13
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue1
local.relation.volume31
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2024_1_2.pdf
Size:
781.05 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections