IMAGE-BASED CROSS-SECTIONAL ANALYSIS AND MICROMECHANICAL MODELING OF YARN AND COMPOSITE MATERIALS

dc.contributor.authorOverberg, Matthias
dc.contributor.authorZalewska, Emilia
dc.contributor.authorAbdkader, Anwar
dc.contributor.authorCherif, Chokri
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2024-10-01T09:40:45Z
dc.date.available2024-10-01T09:40:45Z
dc.description.abstractThis study aims to establish a comprehensive methodology for determining the microstructural properties of hybrid yarns used in composite materials. By developing accurate models of hybrid yarns and composites based on detailed microstructural information such as fibre orientation, fibre diameter and distribution, this approach lays the foundation for future advances. These models, enriched with accurate microstructural data, will facilitate the creation of new modelling techniques that can be used in future research to explore the correlation between microstructural properties and mechanical performance of composite materials.cs
dc.formattext
dc.format.extent7 stran
dc.identifier.doi10.15240/tul/008/2024-2-010
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/175353
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonCurtis C.J., et al.: Computer-generated watercolor. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, 1997, pp. 421-430. https://doi.org/10.1145/258734.25889
dc.relation.isbasedonRajak D.K., Pagar D.D., Kumar R., et al.: Recent progress of reinforcement materials: a comprehensive overview of composite materials, Journal of Materials Research and Technology, 8(6), 2019. https://doi.org/10.1016/j.jmrt.2019.09.068
dc.relation.isbasedonAdvanced Mechanics of Composite Materials: Elsevier, 2007.
dc.relation.isbasedonAnisimov E., Manak J., Puchnin M., et al.: The Effect of Microstructural Features on Mechanical Properties, Key Engineering Materials, 606, 2014. http://dx.doi.org/10.4028/www.scientific.net/KEM.606.47
dc.relation.isbasedonPlaza G.R., Pérez-Rigueiro J., Riekel C., et al.: Relationship between microstructure and mechanical properties in spider silk fibers: identification of two regimes in the microstructural changes, Soft Matter, 22, 2012. http://dx.doi.org/10.1039/C2SM25446H
dc.relation.isbasedonHoang V.T., Kwon B.S., Sung J.W., et al.: Postprocessing method-induced mechanical properties of carbon fiberreinforced thermoplastic composites, Journal of Thermoplastic Composite Materials, 36(1), 2023. https://doi.org/10.1177/08927057209453
dc.relation.isbasedonOztan C., Karkkainen R., Fittipaldi M., et al.: Microstructure and mechanical properties of three dimensional-printed continuous fiber composites, Journal of Composite Materials, 53(2), 2019. https://doi.org/10.1177/0021998318781938
dc.relation.isbasedonRamaswamy K., Modi V., Rao P.S., et al.: An investigation of the influence of matrix properties and fibre–matrix interface behaviour on the mechanical performance of carbon fibrereinforced PEKK and PEEK composites, Composites Part A: Applied Science and Manufacturing, 165, 2023. https://doi.org/10.1016/j.compositesa.2022.107359
dc.relation.isbasedonMehdikhani M., Gorbatikh L., Verpoest I., et al.: Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance, Journal of Composite Materials, 53(12), 2019. https://doi.org/10.1177/0021998318772152
dc.relation.isbasedonTunak M.., Tunakova V., Schindler M., et al.: Spatial arrangement of stainless steel fibers within hybrid yarns designed for electromagnetic shielding. Textile Research Journal, 89(10), 2018. https://doi.org/10.1177/0040517518783354
dc.relation.isbasedonLi M., Li S., Tian Y., et al.: A deep learning convolutional neural network and multi-layer perceptron hybrid fusion model for predicting the mechanical properties of carbon fiber, Materials & Design, 227, 2023. http://dx.doi.org/10.1016/j.matdes.2023.111760
dc.relation.isbasedonShah V., Zadourian S., Yang C., et al.: Data-driven approach for the prediction of mechanical properties of carbon fiber reinforced composites, Materials Advances, 19, 2022. https://doi.org/10.1039/D2MA00698G
dc.relation.isbasedonOverberg M., Badrul Hasan M.M., Abdkader A., et al.: Investigations on the development of impact-resistant thermoplastic fibre hybrid composites from glass and steel fibre, Journal of Composite Materials, 58(14), 2024. https://doi.org/10.1177/00219983241246128
dc.relation.isbasedonWeigert M., Schmidt U.: Nuclei Instance Segmentation and Classification in Histopathology Images with Stardist, in 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC), Kolkata, India: IEEE, 2022, S. 1–4. https://doi.org/10.1109/ISBIC56247.2022.9854534
dc.relation.isbasedonBankhead P.: QuPath: Open source software for digital pathology image analysis, Sci Rep, Bd. 7, Nr. 1, S. 16878, 2017. https://doi.org/10.1038/s41598-017-17204-5
dc.relation.ispartofFibres and Textiles
dc.subjectHybrid compositecs
dc.subjectMicrostructural propertiescs
dc.subjectIntermixingcs
dc.subjectFiber distributioncs
dc.titleIMAGE-BASED CROSS-SECTIONAL ANALYSIS AND MICROMECHANICAL MODELING OF YARN AND COMPOSITE MATERIALSen
dc.typeArticleen
local.accessopen access
local.citation.epage80
local.citation.spage74
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue2
local.relation.volume31
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2024_2_10.pdf
Size:
900.74 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections