IMAGE-BASED CROSS-SECTIONAL ANALYSIS AND MICROMECHANICAL MODELING OF YARN AND COMPOSITE MATERIALS
dc.contributor.author | Overberg, Matthias | |
dc.contributor.author | Zalewska, Emilia | |
dc.contributor.author | Abdkader, Anwar | |
dc.contributor.author | Cherif, Chokri | |
dc.contributor.organization | Technická univerzita v Liberci | |
dc.date.accessioned | 2024-10-01T09:40:45Z | |
dc.date.available | 2024-10-01T09:40:45Z | |
dc.description.abstract | This study aims to establish a comprehensive methodology for determining the microstructural properties of hybrid yarns used in composite materials. By developing accurate models of hybrid yarns and composites based on detailed microstructural information such as fibre orientation, fibre diameter and distribution, this approach lays the foundation for future advances. These models, enriched with accurate microstructural data, will facilitate the creation of new modelling techniques that can be used in future research to explore the correlation between microstructural properties and mechanical performance of composite materials. | cs |
dc.format | text | |
dc.format.extent | 7 stran | |
dc.identifier.doi | 10.15240/tul/008/2024-2-010 | |
dc.identifier.issn | 1335-0617 | |
dc.identifier.uri | https://dspace.tul.cz/handle/15240/175353 | |
dc.language.iso | cs | cs |
dc.publisher | Technical University of Liberec | |
dc.publisher.abbreviation | TUL | |
dc.relation.isbasedon | Curtis C.J., et al.: Computer-generated watercolor. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, 1997, pp. 421-430. https://doi.org/10.1145/258734.25889 | |
dc.relation.isbasedon | Rajak D.K., Pagar D.D., Kumar R., et al.: Recent progress of reinforcement materials: a comprehensive overview of composite materials, Journal of Materials Research and Technology, 8(6), 2019. https://doi.org/10.1016/j.jmrt.2019.09.068 | |
dc.relation.isbasedon | Advanced Mechanics of Composite Materials: Elsevier, 2007. | |
dc.relation.isbasedon | Anisimov E., Manak J., Puchnin M., et al.: The Effect of Microstructural Features on Mechanical Properties, Key Engineering Materials, 606, 2014. http://dx.doi.org/10.4028/www.scientific.net/KEM.606.47 | |
dc.relation.isbasedon | Plaza G.R., Pérez-Rigueiro J., Riekel C., et al.: Relationship between microstructure and mechanical properties in spider silk fibers: identification of two regimes in the microstructural changes, Soft Matter, 22, 2012. http://dx.doi.org/10.1039/C2SM25446H | |
dc.relation.isbasedon | Hoang V.T., Kwon B.S., Sung J.W., et al.: Postprocessing method-induced mechanical properties of carbon fiberreinforced thermoplastic composites, Journal of Thermoplastic Composite Materials, 36(1), 2023. https://doi.org/10.1177/08927057209453 | |
dc.relation.isbasedon | Oztan C., Karkkainen R., Fittipaldi M., et al.: Microstructure and mechanical properties of three dimensional-printed continuous fiber composites, Journal of Composite Materials, 53(2), 2019. https://doi.org/10.1177/0021998318781938 | |
dc.relation.isbasedon | Ramaswamy K., Modi V., Rao P.S., et al.: An investigation of the influence of matrix properties and fibre–matrix interface behaviour on the mechanical performance of carbon fibrereinforced PEKK and PEEK composites, Composites Part A: Applied Science and Manufacturing, 165, 2023. https://doi.org/10.1016/j.compositesa.2022.107359 | |
dc.relation.isbasedon | Mehdikhani M., Gorbatikh L., Verpoest I., et al.: Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance, Journal of Composite Materials, 53(12), 2019. https://doi.org/10.1177/0021998318772152 | |
dc.relation.isbasedon | Tunak M.., Tunakova V., Schindler M., et al.: Spatial arrangement of stainless steel fibers within hybrid yarns designed for electromagnetic shielding. Textile Research Journal, 89(10), 2018. https://doi.org/10.1177/0040517518783354 | |
dc.relation.isbasedon | Li M., Li S., Tian Y., et al.: A deep learning convolutional neural network and multi-layer perceptron hybrid fusion model for predicting the mechanical properties of carbon fiber, Materials & Design, 227, 2023. http://dx.doi.org/10.1016/j.matdes.2023.111760 | |
dc.relation.isbasedon | Shah V., Zadourian S., Yang C., et al.: Data-driven approach for the prediction of mechanical properties of carbon fiber reinforced composites, Materials Advances, 19, 2022. https://doi.org/10.1039/D2MA00698G | |
dc.relation.isbasedon | Overberg M., Badrul Hasan M.M., Abdkader A., et al.: Investigations on the development of impact-resistant thermoplastic fibre hybrid composites from glass and steel fibre, Journal of Composite Materials, 58(14), 2024. https://doi.org/10.1177/00219983241246128 | |
dc.relation.isbasedon | Weigert M., Schmidt U.: Nuclei Instance Segmentation and Classification in Histopathology Images with Stardist, in 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC), Kolkata, India: IEEE, 2022, S. 1–4. https://doi.org/10.1109/ISBIC56247.2022.9854534 | |
dc.relation.isbasedon | Bankhead P.: QuPath: Open source software for digital pathology image analysis, Sci Rep, Bd. 7, Nr. 1, S. 16878, 2017. https://doi.org/10.1038/s41598-017-17204-5 | |
dc.relation.ispartof | Fibres and Textiles | |
dc.subject | Hybrid composite | cs |
dc.subject | Microstructural properties | cs |
dc.subject | Intermixing | cs |
dc.subject | Fiber distribution | cs |
dc.title | IMAGE-BASED CROSS-SECTIONAL ANALYSIS AND MICROMECHANICAL MODELING OF YARN AND COMPOSITE MATERIALS | en |
dc.type | Article | en |
local.access | open access | |
local.citation.epage | 80 | |
local.citation.spage | 74 | |
local.faculty | Faculty of Textile Engineering | en |
local.fulltext | yes | en |
local.relation.issue | 2 | |
local.relation.volume | 31 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- VaT_2024_2_10.pdf
- Size:
- 900.74 KB
- Format:
- Adobe Portable Document Format
- Description:
- článek