SIMULATION OF THE SEGMENT FILLING INSERTION FABRICS AT THE YARN LEVEL

dc.contributor.authorFANG, JIAHUI
dc.contributor.authorKYOSEV, YORDAN KONSTADINOV
dc.contributor.authorLI, YULING
dc.contributor.authorMA, YANXUE
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2023-04-19T09:20:48Z
dc.date.available2023-04-19T09:20:48Z
dc.description.abstractFabrics with segment filling insertion are finding application in several traditional luxurious textiles, clothing, and in the latest time as well for smart textiles. Segment filling allows the integration of conductive yarns for contacting areas, keeping the textile character of the structures. This work presents a method for 3D modeling woven structures with segment filling at the yarn level. The pattern image is analyzed by an image processing tool, written in Python, and used to create the initial weaving information. After that, the different regions are filled with suitable preselected weave types, such as plain, twill, or others. Finally, this data is used to compute the 3D coordinates of the weft and warp yarns, and saved in a suitable format. The 3D visualization is done by the TexMind Viewer, which allows its advanced version export in various formats for FEM, CFD, and other computations.cs
dc.formattext
dc.format.extent6 stran
dc.identifier.doi10.15240/tul/008/2023-1-004
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/167233
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonMao X.H, Bao M.(2005) Weaving Volume II. China Textile Publishing House (Beijing)
dc.relation.isbasedonDong, Z., & Sun, C. T. (2009). Testing and modeling of yarn pull-out in plain woven Kevlar fabrics. Composites Part A: Applied science and manufacturing, 40(12), 1863- 1869. https://doi.org/10.1016/j.compositesa.2009.04.019
dc.relation.isbasedonLeaf, J., Wu, R., Schweickart, E., James, D. L., & Marschner, S. (2018). Interactive design of periodic yarnlevel cloth patterns. ACM Transactions on Graphics (TOG), 37(6), 1-15. https://doi.org/10.1145/3272127.3275105
dc.relation.isbasedonJauffrès, D., Sherwood, J. A., Morris, C. D., & Chen, J. (2010). Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming. International journal of material forming, 3(2), 1205-1216. http://dx.doi.org/10.1007%2Fs12289-009-0646-y
dc.relation.isbasedonTripathi, L., Chowdhury, S., & Behera, B. K. (2022). Modeling and simulation of impact behavior of 3D woven solid structure for ballistic application. Journal of Industrial Textiles, 51(4_suppl), 6065S-6086S. https://doi.org/10.1177/1528083720980467
dc.relation.isbasedonÖzdemir, H., & Başer, G. (2008). Computer simulation of woven fabric appearances based on digital video camera recordings of moving yarns. Textile Research Journal, 78(2), 148-157. http://dx.doi.org/10.1177/0040517507080692
dc.relation.isbasedonÖzdemir, H., & Başer, G. (2009). Computer simulation of plain woven fabric appearance from yarn photographs. The Journal of The Textile Institute, 100(3), 282-292. https://doi.org/10.1080/00405000701757529
dc.relation.isbasedonFang, J., Ma, Y., Li, Y., et al. (2021). Design and development of urban cultural and creative products with segment filling insertion. In Journal of Physics: Conference Series: 1790(1): 012032. doi:10.1088/1742-6596/1790/1/012032
dc.relation.isbasedonNilakantan, G., Keefe, M., Bogetti, T. A., Adkinson, R., & Gillespie Jr, J. W. (2010). On the finite element analysis of woven fabric impact using multiscale modeling techniques. International Journal of Solids and Structures,47(17), 2300-2315. https://doi.org/10.1016/j.ijsolstr.2010.04.029
dc.relation.isbasedonRief, S., Glatt, E., Laourine, E., Aibibu, D., Cherif, C., & Wiegmann, A. (2011). Modeling and CFD-simulation of woven textiles to determine permeability and retention properties. AUTEX Research Journal, 11(3), 78-83.
dc.relation.isbasedonKyosev Y. Generalized geometric modeling of tubular and flat braided structures with arbitrary floating length and multiple filaments. Textile Research Journal. 2016;86(12):1270-1279. https://doi.org/10.1177/0040517515609261
dc.relation.isbasedonKyosev, Y., Topology-Based Modeling of Textile Structures and Their Joint Assemblies, Springer Nature Switzerlang AG, 2019, 238 p, https://doi.org/10.1007/978-3-030-02541-0
dc.relation.isbasedonDash, B. P., Behera, B. K., Mishra, R., & Militky, J. (2013). Modeling of internal geometry of 3D woven fabrics by computation method. Journal of the Textile Institute, 104(3), 312-321. https://doi.org/10.1080/00405000.2012.720850
dc.relation.isbasedonWielhorski, Y., Mendoza, A., Rubino, M., & Roux, S. (2022). Numerical modeling of 3D woven composite reinforcements: A review. Composites Part A: Applied Science and Manufacturing, 154, 106729. https://doi.org/10.1016/j.compositesa.2021.106729
dc.relation.isbasedonManjunath, R. N., & Behera, B. K. (2017). Modelling the geometry of the unit cell of woven fabrics with integrated stiffener sections. The Journal of The Textile Institute, 108(11), 2006-2012. https://doi.org/10.1080/00405000.2017.1308785
dc.relation.isbasedonLee, S. K., Byun, J. H., & Hong, S. H. (2003). Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites. Materials Science and Engineering: A, 347(1-2), 346-358. https://doi.org/10.1016/S0921-5093(02)00614-7
dc.relation.isbasedonDaelemans, L., Faes, J., Allaoui, S., Hivet, G., Dierick, M., Van Hoorebeke, L., & Van Paepegem, W. (2016). Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method. Composites Science and Technology, 137, 177-187. http://dx.doi.org/10.1016/j.compscitech.2016.11.003
dc.relation.isbasedonLiu, H., Kyosev, Y., & Jiang, G. (2022). Yarn level simulation of warp-knitted clothing elements – first results and challenges. Communications in Development and Assembling of Textile Products, 3(2), 115-126. https://doi.org/10.25367/cdatp.2022.3.p115-126
dc.relation.isbasedonCirio, G., Lopez-Moreno, J., Miraut, D., & Otaduy, M. A. (2014). Yarn-level simulation of woven cloth. ACM Transactions on Graphics (TOG), 33(6), 1-11. https://doi.org/10.1145/2661229.2661279
dc.relation.isbasedonNilakantan, G., & Gillespie Jr, J. W. (2012). Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects. Composite Structures, 94(12), 3624-3634. http://dx.doi.org/10.1016/j.compstruct.2012.05.030
dc.relation.ispartofFibres and Textiles
dc.subjectSegment filling insertion fabricscs
dc.subjectYarn levelcs
dc.subjectProduct developmentcs
dc.subject3D simulationcs
dc.titleSIMULATION OF THE SEGMENT FILLING INSERTION FABRICS AT THE YARN LEVELen
dc.typeArticleen
local.accessopen access
local.citation.epage29
local.citation.spage24
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue1
local.relation.volume30
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2023_1_4.pdf
Size:
936.2 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections