NEW SOLUTIONS IN THE PRODUCTION OF COMPOSITES - MECHANICAL PROPERTIES OF COMPOSITES REINFORCED WITH TECHNICAL EMBROIDERY AND WOVEN FABRIC MADE OF FLAX FIBERS

dc.contributor.authorPONIECKA, AGATA
dc.contributor.authorBARBURSKI, MARCIN
dc.contributor.authorRANZ, DAVID
dc.contributor.authorCUARTERO, JESÚS
dc.contributor.authorMIRALBES, RAMON
dc.contributor.organizationTechnická univerzita v Liberci
dc.date.accessioned2023-04-19T09:20:49Z
dc.date.available2023-04-19T09:20:49Z
dc.description.abstractThe main purpose of the article is to present the new possibilities of producing natural fiber composite reinforcement. In this case, a computer embroidery machine by ZSK type JCZA 0109-550 was used. A technical embroidery with a stitch length of 2 mm was made on the machine. The embroidery was made of flax roving with a linear density of 400 tex. The woven fabric was made of the same flax roving as the embroidery, with a surface mass of 400 g/m2. Composites were then produced from the technical embroidery and woven fabric using the infusion method with epoxy resin. The individual configurations differed from each other in the orientation of the roving in the embroidery samples. Samples for tensile strength and tensile elongation tests consisted of 4 layers, while samples for the DCB test consisted of 6 layers, with the addition of a separating foil between the 3rd and 4th layer. Composites were then subjected to strength tests - tensile strength, tensile elongation and DCB test (Double Cantilever Beam test), on the INSTRON machine. During the action of force along the direction of the fibers, composites containing technical embroidery as reinforcement were characterized by higher strength than composites containing woven fabric as reinforcement. Additionally, embroidery is a barrier to the formation of interlayer cracks. Technical embroidery is made on the basis of Tailored Fiber Placement (TFP) technology. This technology allows optimizing the mechanical values of the composite reinforcement.cs
dc.formattext
dc.format.extent5 stran
dc.identifier.doi10.15240/tul/008/2023-1-008
dc.identifier.issn1335-0617
dc.identifier.urihttps://dspace.tul.cz/handle/15240/167237
dc.language.isocscs
dc.publisherTechnical University of Liberec
dc.publisher.abbreviationTUL
dc.relation.isbasedonPoniecka, A., Barburski, M., Urbaniak, M. (2021). Mechanical properties of composites reinforced with technical embroidery made of flax fibers. AUTEX Research Journal https://doi.org/10.2478/aut-2021-0025
dc.relation.isbasedonMecnika, V., Hoerr, M., Krievins, I., Jockenhoevel, S., Gries T. (2014). Technical Embroidery for Smart Textiles, Review. Materials Science Textile and Clothing Technology, 9, 56-63. http://dx.doi.org/10.7250/mstct.2014.009
dc.relation.isbasedonAbbas, B., Khamas, S.K., Ismail, A., Sali, A. (2019). Full Embroidery Designed Electro-Textile Wearable Tag Antenna for WBAN Application. Sensors, 19(11), 2470. https://doi.org/10.3390/s19112470
dc.relation.isbasedonLinz, T., Vieroth, R., Dils, Ch., Koch, M., Braun, T., Friedrich Becker, K., et al. (2008). Embroidered Interconnections and Encapsulation for Electronics in Textiles for Wearable Electronics Applications. Advances in Science and Technology, 60, 85–94. http://dx.doi.org/10.4028/www.scientific.net/AST.60.85
dc.relation.isbasedonShafti, A., Ribas Manero, R.B., Borg, A.M., Althoefer, K., Howard, M.J. (2017). Embroidered Electromyography, A Systematic Design Guide. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25 (9), 1472– 1480. https://doi.org/10.1109/tnsre.2016.2633506
dc.relation.isbasedonMorris, R.H., McHale, G., Dias, T., Newton, M.I. (2013). Embroidered coils for magnetic resonance sensors. Electronics, 2(2), 168–177. https://doi.org/10.3390/electronics2020168
dc.relation.isbasedonZhang, M., Zhao, M., Jian, M., Wang, C., Yu, A., Yin, Z., et al. (2019). Printable Smart Pattern for Multifunctional Energy-Management E-Textile. Matter, 1(1), 168-179. https://doi.org/10.1016/j.matt.2019.02.003
dc.relation.isbasedonMonteiro, S., Candido, V., Braga, F. (2016). Sugarcane bagasse waste in composites for multilayered armor. European Polymer Journal, 78, 173–185. http://dx.doi.org/10.1016%2Fj.eurpolymj.2016.03.031
dc.relation.isbasedonCristaldi, G., Latteri, A., Recca, G. (2010). Composites based on natural fibre fabrics. In, Woven fabric engineering, Dubrovski, P.D., InTech, Rijeka, 317–342. http://dx.doi.org/10.5772/10465
dc.relation.isbasedonBuksnowitz, C., Adusumalli, R., Pahler, A., Sixta, H., Gindl, W. (2012). Acoustical properties of Lyocell, hemp, and flax composites. J. Reinf. Plast. Compos., 29, 3149–3154. https://doi.org/10.1177/0731684410367533
dc.relation.isbasedonLiu, Q., Hughes M. (2008). The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Composites Part A Applied Science and Manufacturing, 39(10), 1644-1652 https://doi.org/10.1016/j.compositesa.2008.07.008
dc.relation.isbasedonBensadoun, F., Verpoest, I., Vuure, A.W. Van. (2017). Interlaminar fracture toughness of flax epoxy composites. J Reinf Plast Compos, 36(2),121–136. https://doi.org/10.1177/0731684416672925
dc.relation.isbasedonMouritz, A.P. (2007). Review of z-pinned composite laminates. Compos A, 38, 2383–97. https://doi.org/10.1016/j.compositesa.2007.08.016
dc.relation.isbasedonRong, M.Z., Zhang, M.Q., Liu, Y., Zhang, Z.W., Yang, G.C., Zeng, H.M. (2001). Effect of stitching on inplane and interlaminar properties of sisal/epoxy laminates. J Compos Mater, 36, 1505–26. https://doi.org/10.1177/0021998302036012163
dc.relation.isbasedonMouritz, A.P., Bannister, M.K., Falzon, P.J., Leong, K.H. (1999). Review of applications for advanced threedimensional fibre textile composites. Composites Part A, 30,1445–1461. https://doi.org/10.1016/S1359-835X(99)00034-2
dc.relation.isbasedonAllegri, G., Zhang X. (2007). On the delamination suppression in structural joints by z-fibre pinning. Composites Part A: Applied Science and Manufacturing, 38, 1107–1115. https://doi.org/10.1016/j.compositesa.2006.06.013
dc.relation.isbasedonDell’Anno, G., Treiber, J.W.G., Partridge, I.K. (2016). Manufacturing of composite parts reinforced throughthickness by tufting. Robotics and Computer-Integrated Manufacturing, 37, 262-272. http://dx.doi.org/10.1016/j.rcim.2015.04.004
dc.relation.isbasedonSickinger, C., Herrmann, A. (2001). Structural Stitching as a method to design high-performans composites in future, 11th International Techtextil-Symposium for Technical Textiles, Nonwovens and Textile-Reinforced Materials, Germany, 23.-26.04.2001
dc.relation.isbasedonPoniecka, A., Barburski, M., Urbaniak, M. Mechanical properties of composites reinforced with technical embroidery made of flax fibers. AUTEX Research Journal https://doi.org/10.2478/aut-2021-0025
dc.relation.isbasedonPoniecka, A., Barburski, M., Ranz, D., Cuartero, J., Miralbes, R. (2022). Comparison of mechanical properties of composites reinforced with technical embroidery, UD and woven fabric made of flax fibers. Materials, 15 (7469), 1-18. https://doi.org/10.3390/ma15217469
dc.relation.isbasedonDocument available on a web page. Retrieved 3 January 2021. Web site: www.technicalembroidery.co.uk
dc.relation.isbasedonEN ISO 527-4:1997; Plastics—Determination of tensile properties—Part 4: Test conditions for isotropic and orthotropic fi-bre-reinforced plastic composites. Available online: https://www.iso.org/standard/4595.html (accessed on 15 March 2021).
dc.relation.isbasedonASTM D 5528-01 Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional FiberReinforced Polymer Matrix Composites
dc.relation.ispartofFibres and Textiles
dc.subjectTechnical embroiderycs
dc.subjectFlax fibrescs
dc.subjectCompositescs
dc.subjectMechanical propertiescs
dc.subjectTailored fiber placementcs
dc.titleNEW SOLUTIONS IN THE PRODUCTION OF COMPOSITES - MECHANICAL PROPERTIES OF COMPOSITES REINFORCED WITH TECHNICAL EMBROIDERY AND WOVEN FABRIC MADE OF FLAX FIBERSen
dc.typeArticleen
local.accessopen access
local.citation.epage53
local.citation.spage49
local.facultyFaculty of Textile Engineeringen
local.fulltextyesen
local.relation.issue1
local.relation.volume30
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaT_2023_1_8.pdf
Size:
364.91 KB
Format:
Adobe Portable Document Format
Description:
článek
Collections