Effective poly(ethylene glycol) methyl ether grafting technique onto Nylon 6 surface to achieve resistance against pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa.

Abstract
Our study is focused on an efficient reduction of amide functional groups to secondary amine on Nylon 6 surface with borane–tetrahydrofuran (BH3–THF) complex, followed by N-alkylation with benzyl chloride (C6H5CH2Cl) which has been successfully used as a model system for further grafting of the reduced Nylon 6 surface by poly(ethylene glycol) methyl ether tosylate (Me-PEG-OTs). The amine-activated surface has been obtained by treatment of reduced Nylon 6 with n-butyllithium or tert-butyllithium in THF. Modified Nylon 6 has been found to be antibacterial particularly due to the presence of hydrophilic poly(ethylene glycol) methyl ether (H3C-PEG) chains. The surface modifications were successfully characterized by various techniques. Water contact angle and free surface energy analyses indicated a significant change in the surface morphology. It was further supported by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and Raman spectroscopy. Finally, antibacterial tests were performed against two pathogenic bacterial strains Pseudomonas aeruginosa (CCM 3955) and Staphylococcus aureus (CCM 3953).
Description
Subject(s)
nylon 6, grafting, bacteria resistance
Citation
ISSN
0022-2461
ISBN
Collections