Influence of Electrospinning Parameters on the Hydrophilicity of Electrospun Polycaprolactone Nanofibres

dc.contributor.authorTiyek, Ismail
dc.contributor.authorGunduz, Aysegul
dc.contributor.authorYalcinkaya, Fatma
dc.contributor.authorChaloupek, Jiri
dc.date.accessioned2019-07-29T06:16:54Z
dc.date.available2019-07-29T06:16:54Z
dc.date.issued2019
dc.description.abstractIn the present study, PCL (polycaprolactone) nanofibres were produced by the electrospinning method. The use of PCL electrospun biopolymer in biomedical applications has attracted considerable interest due to its chemical resistance, biodegradability, biocompatibility, and non-toxic characteristics. However, the hydrophobic nature of PCL polymer restricts the useage of PCL nanofibres for the cell adhesion and absorption. A hydrophilic and biocompatible PCL electrospun mat with a low water contact angle is an attractive strategy for development in tissue engineering and wound dressing. In this study, we demonstrate a feasible and simple method to produce hydrophilic PCL nanofibres for possible application in wound dressing. Chloroform/ethanol (EtOH) and chloroform/dimethylformamide (DMF) mixtures were used as two different solvent systems. The impact of the polymeric solution concentration, applied voltage, and solvent mixtures on the fibre surface morphology and water contact angle was investigated. Consequently, bead structures were observed at low concentrations but disappeared with increases in the concentration. It was observed that the size of beads decreased and the diameter of fibres increased with increasing voltage. The wettability of the webs changed from hydrophobic to hydrophilic with changes of the polymer concentration. The contact angle of the nanofibre mats decreased in both solvent systems as the concentration increased. The results showed that the lowest contact angle was obtained in 24% wt. PCL+chloroform/EtOH solution and was 68°. The highest contact angle was obtained in 4% wt. PCL+chloroform/EtOH solution and was 112°. Using this method, the surface hydrophilicity of the PCL nanofibres improved easily without any surface treatment.cs
dc.identifier.doi10.1166/jnn.2019.16605
dc.identifier.urihttps://dspace.tul.cz/handle/15240/152988
dc.identifier.urihttps://www.ingentaconnect.com/content/asp/jnn/2019/00000019/00000011/art00048;jsessionid=1ldnqjl9fmbep.x-ic-live-02
dc.language.isocscs
dc.relation.ispartofJOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
dc.subjectHydrophilicitycs
dc.subjectElectrospinningcs
dc.subjectNanofibrecs
dc.subjectPCLcs
dc.titleInfluence of Electrospinning Parameters on the Hydrophilicity of Electrospun Polycaprolactone Nanofibrescs
local.citation.epage7260
local.citation.spage7251
local.identifier.publikace6635
local.relation.issue11
local.relation.volume19
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections