The discontinuous Galerkin method for discretely observed Asian options

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
John Wiley and Sons Ltd
Asian options represent an important subclass of the path-dependent contracts that are identified by payoff depending on the average of the underlying asset prices over the prespecified period of option lifetime. Commonly, this average is observed at discrete dates, and also, early exercise features can be admitted. As a result, analytical pricing formulae are not always available. Therefore, some form of a numerical approximation is essential for efficient option valuation. In this paper, we study a PDE model for pricing discretely observed arithmetic Asian options with fixed as well as floating strike for both European and American exercise features. The pricing equation for such options is similar to the Black-Scholes equation with 1 underlying asset, and the corresponding average appears only in the jump conditions across the sampling dates. The objective of the paper is to present the comprehensive methodological concept that forms and improves the valuation process. We employ a robust numerical procedure based on the discontinuous Galerkin approach arising from the piecewise polynomial generally discontinuous approximations. This technique enables a simple treatment of discrete sampling by incorporation of jump conditions at each monitoring date. Moreover, an American early exercise constraint is directly handled as an additional nonlinear source term in the pricing equation. The proposed solving procedure is accompanied by an empirical study with practical results compared to reference values.
American-style options, Asian options, discontinuous Galerkin method, discrete sampling, option pricing, penalty method