Low-stress mechanical property study of various functional fabrics for tactile property evaluation

Functional finishing brings an alteration on the mechanical and surface properties of textile materials and henceforth influences the tactile properties. In this work, Kawabata evaluation systems (KES) for fabrics were utilized to notice the changes in the tactile properties of fabrics resulting from different finishing types such as inkjet printing, screen printing, and coating. The effects of functional finishing on the fabric’s tactile property were inconsistent with reference to the course of decrease or increase being dependent on the types of finishes. The findings showed that KES can be employed as a promising tool to sort out the suitable functional finishing types in terms of tactile properties. Amongst the implemented finishing types, inkjet printing offered superior tactile properties with respect to tensile energy (softness), shear rigidity, compressional softness, bending stiffness (drapability), and surface properties. The KES results confirmed that low-stress mechanical properties are strongly associated with the tactile property and might assist as a quality profile data source for guaranteeing the production and development of a virtuous quality product. The result encourages further utilization of the KES for functional fabric tactile property evaluation.
Functional fabrics, KES, Low-stress mechanical properties, Tactile property