Surface Modification of Textile Fibers by Whiskerization

dc.contributor.authorHassanin, Ahmed H.
dc.contributor.authorWang, Yuanfeng
dc.contributor.authorKhan, Muhammad Zaman
dc.contributor.authorBaheti, Vijay
dc.contributor.authorMilitký, Jiří
dc.date.accessioned2020-10-05T08:17:54Z
dc.date.available2020-10-05T08:17:54Z
dc.date.issued2019
dc.format.extent16 strancs
dc.identifier.WebofScienceResearcherIDN-2953-2015 Baheti, Vijay
dc.identifier.isbn978-80-7494-493-2
dc.identifier.orcid0000-0003-4253-7829 Hassanin, Ahmed H.
dc.identifier.orcid0000-0003-2284-0900 Baheti, Vijay
dc.identifier.orcid0000-0001-8480-2622 Militký, Jiří
dc.identifier.urihttps://dspace.tul.cz/handle/15240/157854
dc.language.isocscs
dc.publisherTechnická univerzita v Liberci
dc.relation.isbasedonRivero1 P., et al.: Nanomaterials for Functional Textiles and Fibers, Nanoscale Research Letters, 10, 501, (2015)
dc.relation.isbasedonFei J., et al.: Growth of aligned ZnO nanorods on carbon fabric and its composite for superior mechanical and tribological performance, Surface & Coatings Technology 344, (2018)
dc.relation.isbasedonLiu Y., et al.: Design, Fabrication and Application of Multi-Scale, MultiFunctional Nanostructured Carbon Fibers, IntechOpen, 2018
dc.relation.isbasedonSuraya A., et al.: Growth of Carbon Nanotubes on Carbon Fibers and The Tensile Properties of Resulting Carbon Fiber Reinforced Polypropylene Composites, Journal of Engineering Science and Technology, No. 4, (2009)
dc.relation.isbasedonWang Y., et al.: High Interlaminar Shear Strength Enhancement of Carbon Fiber/Epoxy Composite through Fiber- and Matrix-Anchored Carbon Nanotube Networks, ACS Appl. Mater. Interfaces, (2017)
dc.relation.isbasedonZheng Z., Synthesis and Modifications of Metal Oxide Nanostructures and Their Applications, PhD thesis at Queensland University of Technology, School Of Physical and Chemical Sciences, 2009
dc.relation.isbasedonGalan U., et al.: Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers, Composites Science and Technology 71, (2011)
dc.relation.isbasedonLi K., et al.: Synthesis of zirconium carbide whiskers by a combination of microwave hydrothermal and carbothermal reduction, Journal of Solid-State Chemistry, 258, (2018)
dc.relation.isbasedonFeng S., Li G., Hydrothermal and Solvothermal Syntheses, Modern Inorganic Synthetic Chemistry, 2011
dc.relation.isbasedonSuraya A., et al.: Growth of Carbon Nanotubes on Carbon Fibers and The Tensile Properties of Resulting Carbon Fiber Reinforced Polypropylene Composites, Journal of Engineering Science and Technology, 4, 4, (2009)
dc.relation.isbasedonLin Y., et al.: Increased Interface Strength in Carbon Fiber Composites through a ZnO Nanowire Interphase, Adv. Funct. Mater., 19, 2009
dc.relation.isbasedonLiu Z., et al.: Poptube approach for ultrafast carbon nanotube growth, Chemical communications, 35, (2011)
dc.relation.isbasedonGhamei F., et al.: Effects of Thickness and Amount of Carbon Nanofiber Coated Carbon Fiber on Improving the Mechanical Properties of Nanocomposites, Nanomaterials, 6, (2016)
dc.relation.isbasedonEhlert G., et al.: Role of Surface Chemistry in Adhesion between ZnO Nanowires and Carbon Fibers in Hybrid Composites, ACS Appl. Mater. Interfaces, 5, 3, (2013)
dc.relation.isbasedonFei J., et al.: Bonding TiO2 array on carbon fabric for outstanding mechanical and wear resistance of carbon fabric/phenolic composite, Surface and Coatings Technology 317, (2017)
dc.relation.isbasedonKowbel W., Bruce C., Withers J., Effect of carbon fabric whiskerization on mechanical properties of C-C composites, Composites, A 28, (1997)
dc.relation.isbasedonWang X., et al., Effect of Graphene Nanowall Size on the Interfacial Strength of Carbon Fiber Reinforced Composites, Nanomaterials, 8, (2018)
dc.relation.isbasedonVishkaei M., et al.: Effect of short carbon fiber surface treatment on composite properties, Journal of Composite Materials, 45(18), (2010)
dc.relation.isbasedonMajumdar A., et al.: Improving the mechanical properties of p-aramid fabrics and composites by developing Nanostructures, Polymer Composites, (2018)
dc.relation.isbasedonZheng N., et al.: In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates, Carbon, 110, (2016)
dc.relation.isbasedonLi K., et al.: In-situ synthesis and growth mechanism of silicon nitride nanowires on carbon fiber fabrics, Ceramics International, 40, (2014)
dc.relation.isbasedonKim B., et al., Interfacial control through ZnO nanorod growth on plasmatreated carbon fiber for multiscale reinforcement of carbon fiber/polyamide 6 composites, Materials Today Communications 17, (2018)
dc.relation.isbasedonArfaoui M., et al.: Development and characterization of a hydrophobic treatment for jute fibers based on zinc oxide nanoparticles and a fatty acid, Applied Surface Science , 397, (2017)
dc.relation.isbasedonDolez P., Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids, Procedia Engineering, 200, (2017)
dc.relation.isbasedonCosta S., et al.: ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer, Chem. Commun., 49, (2013)
dc.relation.isbasedonMun S., et al.: Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics, Science and Technology of advanced Materials, 18 (1), (2017)
dc.relation.ispartofRecent Trends in Fibrous Materials Science
dc.titleSurface Modification of Textile Fibers by Whiskerizationcs
dc.typechapter
local.accessopen access
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Surface Modification.pdf
Size:
3.47 MB
Format:
Adobe Portable Document Format
Description:
článek
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections