Surface Modification of Textile Fibers by Whiskerization
dc.contributor.author | Hassanin, Ahmed H. | |
dc.contributor.author | Wang, Yuanfeng | |
dc.contributor.author | Khan, Muhammad Zaman | |
dc.contributor.author | Baheti, Vijay | |
dc.contributor.author | Militký, Jiří | |
dc.date.accessioned | 2020-10-05T08:17:54Z | |
dc.date.available | 2020-10-05T08:17:54Z | |
dc.date.issued | 2019-01-01 | |
dc.format.extent | 16 stran | cs |
dc.identifier.WebofScienceResearcherID | N-2953-2015 Baheti, Vijay | |
dc.identifier.isbn | 978-80-7494-493-2 | |
dc.identifier.orcid | 0000-0003-4253-7829 Hassanin, Ahmed H. | |
dc.identifier.orcid | 0000-0003-2284-0900 Baheti, Vijay | |
dc.identifier.orcid | 0000-0001-8480-2622 Militký, Jiří | |
dc.identifier.uri | https://dspace.tul.cz/handle/15240/157854 | |
dc.language.iso | cs | cs |
dc.publisher | Technická univerzita v Liberci | |
dc.relation.isbasedon | Rivero1 P., et al.: Nanomaterials for Functional Textiles and Fibers, Nanoscale Research Letters, 10, 501, (2015) | |
dc.relation.isbasedon | Fei J., et al.: Growth of aligned ZnO nanorods on carbon fabric and its composite for superior mechanical and tribological performance, Surface & Coatings Technology 344, (2018) | |
dc.relation.isbasedon | Liu Y., et al.: Design, Fabrication and Application of Multi-Scale, MultiFunctional Nanostructured Carbon Fibers, IntechOpen, 2018 | |
dc.relation.isbasedon | Suraya A., et al.: Growth of Carbon Nanotubes on Carbon Fibers and The Tensile Properties of Resulting Carbon Fiber Reinforced Polypropylene Composites, Journal of Engineering Science and Technology, No. 4, (2009) | |
dc.relation.isbasedon | Wang Y., et al.: High Interlaminar Shear Strength Enhancement of Carbon Fiber/Epoxy Composite through Fiber- and Matrix-Anchored Carbon Nanotube Networks, ACS Appl. Mater. Interfaces, (2017) | |
dc.relation.isbasedon | Zheng Z., Synthesis and Modifications of Metal Oxide Nanostructures and Their Applications, PhD thesis at Queensland University of Technology, School Of Physical and Chemical Sciences, 2009 | |
dc.relation.isbasedon | Galan U., et al.: Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers, Composites Science and Technology 71, (2011) | |
dc.relation.isbasedon | Li K., et al.: Synthesis of zirconium carbide whiskers by a combination of microwave hydrothermal and carbothermal reduction, Journal of Solid-State Chemistry, 258, (2018) | |
dc.relation.isbasedon | Feng S., Li G., Hydrothermal and Solvothermal Syntheses, Modern Inorganic Synthetic Chemistry, 2011 | |
dc.relation.isbasedon | Suraya A., et al.: Growth of Carbon Nanotubes on Carbon Fibers and The Tensile Properties of Resulting Carbon Fiber Reinforced Polypropylene Composites, Journal of Engineering Science and Technology, 4, 4, (2009) | |
dc.relation.isbasedon | Lin Y., et al.: Increased Interface Strength in Carbon Fiber Composites through a ZnO Nanowire Interphase, Adv. Funct. Mater., 19, 2009 | |
dc.relation.isbasedon | Liu Z., et al.: Poptube approach for ultrafast carbon nanotube growth, Chemical communications, 35, (2011) | |
dc.relation.isbasedon | Ghamei F., et al.: Effects of Thickness and Amount of Carbon Nanofiber Coated Carbon Fiber on Improving the Mechanical Properties of Nanocomposites, Nanomaterials, 6, (2016) | |
dc.relation.isbasedon | Ehlert G., et al.: Role of Surface Chemistry in Adhesion between ZnO Nanowires and Carbon Fibers in Hybrid Composites, ACS Appl. Mater. Interfaces, 5, 3, (2013) | |
dc.relation.isbasedon | Fei J., et al.: Bonding TiO2 array on carbon fabric for outstanding mechanical and wear resistance of carbon fabric/phenolic composite, Surface and Coatings Technology 317, (2017) | |
dc.relation.isbasedon | Kowbel W., Bruce C., Withers J., Effect of carbon fabric whiskerization on mechanical properties of C-C composites, Composites, A 28, (1997) | |
dc.relation.isbasedon | Wang X., et al., Effect of Graphene Nanowall Size on the Interfacial Strength of Carbon Fiber Reinforced Composites, Nanomaterials, 8, (2018) | |
dc.relation.isbasedon | Vishkaei M., et al.: Effect of short carbon fiber surface treatment on composite properties, Journal of Composite Materials, 45(18), (2010) | |
dc.relation.isbasedon | Majumdar A., et al.: Improving the mechanical properties of p-aramid fabrics and composites by developing Nanostructures, Polymer Composites, (2018) | |
dc.relation.isbasedon | Zheng N., et al.: In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates, Carbon, 110, (2016) | |
dc.relation.isbasedon | Li K., et al.: In-situ synthesis and growth mechanism of silicon nitride nanowires on carbon fiber fabrics, Ceramics International, 40, (2014) | |
dc.relation.isbasedon | Kim B., et al., Interfacial control through ZnO nanorod growth on plasmatreated carbon fiber for multiscale reinforcement of carbon fiber/polyamide 6 composites, Materials Today Communications 17, (2018) | |
dc.relation.isbasedon | Arfaoui M., et al.: Development and characterization of a hydrophobic treatment for jute fibers based on zinc oxide nanoparticles and a fatty acid, Applied Surface Science , 397, (2017) | |
dc.relation.isbasedon | Dolez P., Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids, Procedia Engineering, 200, (2017) | |
dc.relation.isbasedon | Costa S., et al.: ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer, Chem. Commun., 49, (2013) | |
dc.relation.isbasedon | Mun S., et al.: Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics, Science and Technology of advanced Materials, 18 (1), (2017) | |
dc.relation.ispartof | Recent Trends in Fibrous Materials Science | |
dc.title | Surface Modification of Textile Fibers by Whiskerization | cs |
dc.type | chapter | |
local.access | open access |