Browsing by Author "Waclawek, Maria"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemChemical oxidation and reduction of hexachlorocyclohexanes: A review(2019-01-01) Waclawek, Stanislaw; Silvestri, Daniele; Hrabák, Pavel; Padil, Vinod V. T.; Torres-Mendieta, Rafael; Waclawek, Maria; Černík, Miroslav; Dionysiou, Dionysios D.Lindane (gamma-hexachlorocyclohexane) and its isomers (HCH) are some of the most common and most easily detected organochlorine pesticides in the environment. The widespread distribution of lindane is due to its use as an insecticide, accompanied by its persistence and bioaccumulation, whereas HCH were disposed of as waste in unmanaged landfills. Unfortunately, certain HCH (especially the most reactive ones: gamma- and alpha-HCH) are harmful to the central nervous system and to reproductive and endocrine systems, therefore development of suitable remediation methods is needed to remove them from contaminated soil and water. This paper provides a short history of the use of lindane and a description of the properties of HCH, as well as their determination methods. The main focus of the paper, however, is a review of oxidative and reductive treatment methods. Although these methods of HCH remediation are popular, there are no review papers summarising their principles, history, advantages and disadvantages. Furthermore, recent advances in the chemical treatment of HCH are discussed and risks concerning these processes are given.
- ItemImprovement of the thermophilic anaerobic digestion and hygienisation of waste activated sludge by synergistic pretreatment(2019-06-07) Grubel, Klaudiusz; Waclawek, Stanislaw; Kuglarz, Mariusz; Waclawek, Maria; Cernik, MiroslavHybrid disintegration of waste activated sludge (WAS) before the thermophilic anaerobic stabilization of WAS contributes to the intensification of organic compounds decomposition and increases the effectiveness of the anaerobic stabilization process compared to the fermentation of raw WAS. This article investigates the influence of a chemical-thermal pretreatment procedure with the use of NaOH and freezing by the dry ice on WAS. We found that the hybrid pretreatment of WAS causes higher concentration of released organics in the liquid phase (represented here as a change in soluble chemical oxygen demand - SCOD value) in comparison to these disintegration techniques used separately. The use of disintegrated WAS (WASD) as an additional material in the digester chambers impacts (varying on its proportion added), the generation of biogas and its yield. The recorded amount of the produced biogas and biogas yield after 21days of fermentation increased by 26.6% and 2.7%, respectively (in comparison to blank sample). In addition, it was observed that the hybrid process before anaerobic stabilization contributes to a higher hygienisation of the digested sludge.